From human to robot: A comparative analysis of agent bot anthropomorphic perceptions between Gen Y and Gen Z

Main Article Content

Alfian Budi Primanto
Muh. Sirojuddin Amin

Abstract

This study investigates the significant differences between Generation Y and Generation Z in evaluating the perceived humanness or anthropomorphism of a designed chatbot and the effect of that evaluation on their intention to reuse it. Utilizing a scenario-based experiment and a survey, we examined the responses of 328 participants aged 17-39 years. Our analysis, employing independent sample t-tests and regression, revealed that Generation Y consistently rates the chatbot higher in virtual appearance, cognitive empathy, emotional empathy, moral virtue, and sociality compared to Generation Z. Additionally, cognitive empathy appears less influential in shaping reuse intentions as our designed bot failed to understand users' complex queries regarding promotional information and credit availability and calculations. The study also highlights the limitations of relying solely on static PDF-based knowledge, which restricts the chatbot's flexibility and depth in handling diverse queries.

Downloads

Download data is not yet available.

Article Details

How to Cite
Primanto, A. B., & Amin, M. S. (2024). From human to robot: A comparative analysis of agent bot anthropomorphic perceptions between Gen Y and Gen Z. Jurnal Ekonomi Modernisasi, 20(1), 1–18. https://doi.org/10.21067/jem.v20i1.10289
Section
Articles

References

Al-Sharafi, M. A., Al-Emran, M., Arpaci, I., Iahad, N. A., AlQudah, A. A., Iranmanesh, M., & Al-Qaysi, N. (2023). Generation Z use of artificial intelligence products and its impact on environmental sustainability: A cross-cultural comparison. Computers in Human Behavior, 143, 107708. https://doi.org/10.1016/j.chb.2023.107708

Ameen, N., Cheah, J., & Kumar, S. (2022). It’s all part of the customer journey: The impact of augmented reality, chatbots, and social media on the body image and self‐esteem of Generation Z female consumers. Psychology & Marketing, 39(11), 2110–2129. https://doi.org/10.1002/mar.21715

Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473

Aslam, M. (2023). Bridging the Future: Automation and Bots in Enterprise Resource Planning for Streamlined Operations. Social Sciences Spectrum, 2(1), 120–129.

Belen Saglam, R., Nurse, J. R., & Hodges, D. (2021). Privacy concerns in chatbot interactions: When to trust and when to worry. HCI International 2021-Posters: 23rd HCI International Conference, HCII 2021, Virtual Event, July 24–29, 2021, Proceedings, Part II 23, 391–399.

Bilgihan, A. (2016). Gen Y customer loyalty in online shopping: An integrated model of trust, user experience and branding. Computers in Human Behavior, 61, 103–113. https://doi.org/10.1016/j.chb.2016.03.014

Bilquise, G., Ibrahim, S., & Shaalan, K. (2022). Emotionally Intelligent Chatbots: A Systematic Literature Review. Human Behavior and Emerging Technologies, 2022, 1–23. https://doi.org/10.1155/2022/9601630

Blut, M., Wang, C., Wünderlich, N. V., & Brock, C. (2021). Understanding anthropomorphism in service provision: a meta-analysis of physical robots, chatbots, and other AI. Journal of the Academy of Marketing Science, 49(4), 632–658. https://doi.org/10.1007/s11747-020-00762-y

Borau, S., Otterbring, T., Laporte, S., & Fosso Wamba, S. (2021). The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychology & Marketing, 38(7), 1052–1068. https://doi.org/10.1002/mar.21480

Brandtzaeg, P. B., & Følstad, A. (2018). Chatbots: changing user needs and motivations. Interactions, 25(5), 38–43. https://doi.org/10.1145/3236669

Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environments, 10(1), 60. https://doi.org/10.1186/s40561-023-00269-3

Chandra, S., Verma, S., Lim, W. M., Kumar, S., & Donthu, N. (2022). Personalization in personalized marketing: Trends and ways forward. Psychology & Marketing, 39(8), 1529–1562. https://doi.org/10.1002/mar.21670

Chattaraman, V., Kwon, W.-S., Gilbert, J. E., & Ross, K. (2019). Should AI-Based, conversational digital assistants employ social- or task-oriented interaction style? A task-competency and reciprocity perspective for older adults. Computers in Human Behavior, 90, 315–330. https://doi.org/10.1016/j.chb.2018.08.048

Chaves, A. P., & Gerosa, M. A. (2019). How should my chatbot interact? A Survey on Human-Chatbot Interaction Design., 190402743.

Cheng, Y., & Jiang, H. (2022). Customer–brand relationship in the era of artificial intelligence: understanding the role of chatbot marketing efforts. Journal of Product & Brand Management, 31(2), 252–264. https://doi.org/10.1108/JPBM-05-2020-2907

Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587–595. https://doi.org/10.1016/j.jbusres.2018.10.004

Crolic, C., Thomaz, F., Hadi, R., & Stephen, A. T. (2022). Blame the Bot: Anthropomorphism and Anger in Customer–Chatbot Interactions. Journal of Marketing, 86(1), 132–148. https://doi.org/10.1177/00222429211045687

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033

Edwards, C., Edwards, A., Spence, P. R., & Shelton, A. K. (2014). Is that a bot running the social media feed? Testing the differences in perceptions of communication quality for a human agent and a bot agent on Twitter. Computers in Human Behavior, 33, 372–376. https://doi.org/10.1016/j.chb.2013.08.013

Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychological Review, 144(4), 864.

Fernandes, T., & Oliveira, E. (2021). Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. Journal of Business Research, 122, 180–191. https://doi.org/10.1016/j.jbusres.2020.08.058

Følstad, A., & Brandtzaeg, P. B. (2020). Users’ experiences with chatbots: findings from a questionnaire study. Quality and User Experience, 5(1), 3. https://doi.org/10.1007/s41233-020-00033-2

Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277–304. https://doi.org/10.1080/15228053.2023.2233814

Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020

Golossenko, A., Pillai, K. G., & Aroean, L. (2020). Seeing brands as humans: Development and validation of a brand anthropomorphism scale. International Journal of Research in Marketing, 37(4), 737–755. https://doi.org/10.1016/j.ijresmar.2020.02.007

Gummerus, J., Lipkin, M., Dube, A., & Heinonen, K. (2019). Technology in use – characterizing customer self-service devices (SSDS). Journal of Services Marketing, 33(1), 44–56. https://doi.org/10.1108/JSM-10-2018-0292

Hoecker, R. (2007). The role of photography in Peru’s truth and reconciliation process. University of Missouri-Columbia.

Hu, Y., & Sun, Y. (2023). Understanding the joint effects of internal and external anthropomorphic cues of intelligent customer service bot on user satisfaction. Data and Information Management, 7(3), 100047. https://doi.org/10.1016/j.dim.2023.100047

Jacob, T. P., Bizotto, B. L. S., & Sathiyanarayanan, M. (2024). Constructing the ChatGPT for PDF Files with Langchain–AI. The 2024 International Conference on Inventive Computation Technologies (ICICT), 835–839.

Johansson, M. (2021). Talking with a Chatbot: Simulated Understanding of Human–Chatbot Communication? In Analyzing Digital Discourses (pp. 105–131). Springer International Publishing. https://doi.org/10.1007/978-3-030-84602-2_5

Kim, Y., & Sundar, S. S. (2012). Anthropomorphism of computers: Is it mindful or mindless? Computers in Human Behavior, 28(1), 241–250. https://doi.org/10.1016/j.chb.2011.09.006

Klaus, P., & Zaichkowsky, J. (2020). AI voice bots: a services marketing research agenda. Journal of Services Marketing, 34(3), 389–398. https://doi.org/10.1108/JSM-01-2019-0043

Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.

Kumar, V., Dixit, A., Javalgi, R. G., & Dass, M. (2016). Research framework, strategies, and applications of intelligent agent technologies (IATs) in marketing. Journal of the Academy of Marketing Science, 44(1), 24–45. https://doi.org/10.1007/s11747-015-0426-9

Kushwaha, A. K., & Kar, A. K. (2024). MarkBot – A Language Model-Driven Chatbot for Interactive Marketing in Post-Modern World. Information Systems Frontiers, 26(3), 857–874. https://doi.org/10.1007/s10796-021-10184-y

Kvale, K., Sell, O. A., Hodnebrog, S., & Følstad, A. (2019). Improving conversations: lessons learnt from manual analysis of chatbot dialogues. International Workshop on Chatbot Research and Design, 187–200.

Lei, S. I., Shen, H., & Ye, S. (2021). A comparison between chatbot and human service: customer perception and reuse intention. International Journal of Contemporary Hospitality Management, 33(11), 3977–3995. https://doi.org/10.1108/IJCHM-12-2020-1399

Liébana-Cabanillas, F., Sánchez-Fernández, J., & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464–478. https://doi.org/10.1016/j.chb.2014.03.022

Lu, L., McDonald, C., Kelleher, T., Lee, S., Chung, Y. J., Mueller, S., Vielledent, M., & Yue, C. A. (2022). Measuring consumer-perceived humanness of online organizational agents. Computers in Human Behavior, 128, 107092. https://doi.org/10.1016/j.chb.2021.107092

Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science, mksc.2019.1192. https://doi.org/10.1287/mksc.2019.1192

Malodia, S., Ferraris, A., Sakashita, M., Dhir, A., & Gavurova, B. (2023). Can Alexa serve customers better? AI-driven voice assistant service interactions. Journal of Services Marketing, 37(1), 25–39. https://doi.org/10.1108/JSM-12-2021-0488

Mason, M. C., Zamparo, G., Marini, A., & Ameen, N. (2022). Glued to your phone? Generation Z’s smartphone addiction and online compulsive buying. Computers in Human Behavior, 136, 107404. https://doi.org/10.1016/j.chb.2022.107404

McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. https://doi.org/10.1016/j.chb.2019.05.009

Moriuchi, E. (2021). An empirical study on anthropomorphism and engagement with disembodied AIs and consumers’ re‐use behavior. Psychology & Marketing, 38(1), 21–42. https://doi.org/10.1002/mar.21407

Munnukka, J., Talvitie-Lamberg, K., & Maity, D. (2022). Anthropomorphism and social presence in Human–Virtual service assistant interactions: The role of dialog length and attitudes. Computers in Human Behavior, 135, 107343. https://doi.org/10.1016/j.chb.2022.107343

Nass, C., & Moon, Y. (2000). Machines and Mindlessness: Social Responses to Computers. Journal of Social Issues, 56(1), 81–103. https://doi.org/10.1111/0022-4537.00153

Nijssen, S. R. R., Müller, B. C. N., Bosse, T., & Paulus, M. (2021). You, robot? The role of anthropomorphic emotion attributions in children’s sharing with a robot. International Journal of Child-Computer Interaction, 30, 100319. https://doi.org/10.1016/j.ijcci.2021.100319

Paschen, J., Paschen, U., Pala, E., & Kietzmann, J. (2021). Artificial intelligence (AI) and value co-creation in B2B sales: Activities, actors and resources. Australasian Marketing Journal, 29(3), 243–251. https://doi.org/10.1016/j.ausmj.2020.06.004

Peres, R., Schreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269–275. https://doi.org/10.1016/j.ijresmar.2023.03.001

Primanto, A. B., & Rachma, N. (2023). Anyone Muslim but everywhere Hallyu: Does religious commitment still matter in exerting consumer behaviors? Jurnal Manajemen Dan Pemasaran Jasa, 16(2), 201–224. https://doi.org/10.25105/jmpj.v16i2.17080

Proudfoot, D. (2011). Anthropomorphism and AI: Turingʼs much misunderstood imitation game. Artificial Intelligence, 175(5–6), 950–957. https://doi.org/10.1016/j.artint.2011.01.006

Radziwill, N. M., & Benton, M. C. (2017). Evaluating Quality of Chatbots and Intelligent Conversational Agents. http://arxiv.org/abs/1704.04579

Rafieian, O., & Yoganarasimhan, H. (2023). AI and Personalization. In Artificial Intelligence in Marketing (pp. 77–102). https://doi.org/10.1108/S1548-643520230000020004

Rauschnabel, P. A., Babin, B. J., tom Dieck, M. C., Krey, N., & Jung, T. (2022). What is augmented reality marketing? Its definition, complexity, and future. Journal of Business Research, 142, 1140–1150. https://doi.org/10.1016/j.jbusres.2021.12.084

Renier, L. A., Schmid Mast, M., & Bekbergenova, A. (2021). To err is human, not algorithmic – Robust reactions to erring algorithms. Computers in Human Behavior, 124, 106879. https://doi.org/10.1016/j.chb.2021.106879

Rhim, J., Kwak, M., Gong, Y., & Gweon, G. (2022). Application of humanization to survey chatbots: Change in chatbot perception, interaction experience, and survey data quality. Computers in Human Behavior, 126, 107034. https://doi.org/10.1016/j.chb.2021.107034

Roumeliotis, K. I., Tselikas, N. D., & Nasiopoulos, D. K. (2023). Llama 2: Early Adopters’ Utilization of Meta’s New Open-Source Pretrained Model. Preprints, 2023072142. https://doi.org/https://doi.org/10.20944/preprints202307.2142.v2

Savastano, M., Biclesanu, I., Anagnoste, S., Laviola, F., & Cucari, N. (2024). Enterprise chatbots in managers’ perception: a strategic framework to implement successful chatbot applications for business decisions. Management Decision. https://doi.org/10.1108/MD-10-2023-1967

Schuetzler, R. M., Grimes, G. M., & Scott Giboney, J. (2020). The impact of chatbot conversational skill on engagement and perceived humanness. Journal of Management Information Systems, 37(3), 875–900. https://doi.org/10.1080/07421222.2020.1790204

Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14–24. https://doi.org/10.1016/j.jbusres.2020.04.030

Silva, F. A., Shojaei, A. S., & Barbosa, B. (2023). Chatbot-Based Services: A Study on Customers’ Reuse Intention. Journal of Theoretical and Applied Electronic Commerce Research, 18(1), 457–474. https://doi.org/10.3390/jtaer18010024

Singh, J., Flaherty, K., Sohi, R. S., Deeter-Schmelz, D., Habel, J., Le Meunier-FitzHugh, K., Malshe, A., Mullins, R., & Onyemah, V. (2019). Sales profession and professionals in the age of digitization and artificial intelligence technologies: concepts, priorities, and questions. Journal of Personal Selling & Sales Management, 39(1), 2–22. https://doi.org/10.1080/08853134.2018.1557525

Spinelli, G., & Basharat, A. (2011). Multi-agent collaboration based on enhanced cognitive awareness: an architecture for agents’ profiling on the semantic web. Expert Systems, no-no. https://doi.org/10.1111/j.1468-0394.2011.00593.x

Stoilova, E. (2021). AI chatbots as a customer service and support tool. ROBONOMICS: The Journal of the Automated Economy, 2, 21.

Suhaili, S. M., Salim, N., & Jambli, M. N. (2021). Service chatbots: A systematic review. Expert Systems with Applications, 184, 115461. https://doi.org/10.1016/j.eswa.2021.115461

Terblanche, N., & Kidd, M. (2022). Adoption Factors and Moderating Effects of Age and Gender That Influence the Intention to Use a Non-Directive Reflective Coaching Chatbot. SAGE Open, 12(2), 215824402210961. https://doi.org/10.1177/21582440221096136

Tintarev, N., O’donovan, J., & Felfernig, A. (2016). Introduction to the Special Issue on Human Interaction with Artificial Advice Givers. ACM Transactions on Interactive Intelligent Systems, 6(4), 1–12. https://doi.org/10.1145/3014432

Turner, A. (2015). Generation Z: Technology and Social Interest. The Journal of Individual Psychology, 71(2), 103–113. https://doi.org/10.1353/jip.2015.0021

Tuzovic, S., & Paluch, S. (2018). Conversational commerce–a new era for service business development? Service Business Development: Strategien–Innovationen–GeschäftsmodelleBand, 1, 81–100.

van der Goot, M. J., & Pilgrim, T. (2019). Exploring age differences in motivations for and acceptance of chatbot communication in a customer service context. International Workshop on Chatbot Research and Design, 173–186.

Vinichenko, M. V., Nikiporets-Takigawa, G. Y., Oseev, A. A., Rybakova, M. V., & Makushkin, S. A. (2022). Trust of the Generation Z in Artificial Intelligence in the Assessment of Historical Events. International Journal of Early Childhood Special Education, 14(1).

Waytz, A., Gray, K., Epley, N., & Wegner, D. M. (2010). Causes and consequences of mind perception. Trends in Cognitive Sciences, 14(8), 383–388. https://doi.org/10.1016/j.tics.2010.05.006

White, G. (2018). Child advice chatbots fail to spot sexual abuse. https://www.bbc.com/news/technology-46507900

Yagoda, M. (2024). Airline held liable for its chatbot giving passenger bad advice - what this means for travellers. https://www.bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know

Zulaikha, S., Mohamed, H., Kurniawati, M., Rusgianto, S., & Rusmita, S. A. (2020). Customer predictive analytics using artificial intelligence. The Singapore Economic Review, 1–12. https://doi.org/10.1142/S0217590820480021