The quality enhancement system improvement using the ANFIS method for segmentation of lecturer performance

Main Article Content

Mutmainah Mutmainah
Umi Marfuah
Andreas Tri Panudju

Abstract

Lecturers play a crucial role in developing skilled human resources. Classifying lecturer performance is believed to enhance the internal quality assurance system in the learning process and boost the scientific transformation process for students. This research aims to assess the effectiveness of using ANFIS as a classification approach for evaluating a lecturer's teaching ability. The study utilized a quantitative research method to evaluate the teaching performance of lecturers and a qualitative research method to analyze the internal quality assurance system at Universitas Muhammadiyah Jakarta. This study intends to use ANFIS to analyze instructor performance and pinpoint opportunities for enhancement in the college's internal quality assurance system. The study's findings suggest that ANFIS is an appropriate method for categorizing lecturers' performance, with an accuracy rate of 0.5. The insights can help pinpoint areas for development and guide actions to enhance the quality of education offered by the college. The study highlights the importance of using sophisticated approaches such as ANFIS to achieve continuous improvement and quality assurance in higher education institutions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mutmainah, M., Marfuah, U., & Panudju, A. T. (2024). The quality enhancement system improvement using the ANFIS method for segmentation of lecturer performance. Jurnal Ekonomi Modernisasi, 19(2), 151–157. https://doi.org/10.21067/jem.v19i2.8419
Section
Articles
Author Biographies

Umi Marfuah, Universitas Muhammadiyah Jakarta, Indonesia

Lecturer at Industrial Engineering Department

 

 

Andreas Tri Panudju, Universitas Bhayangkara Jakarta Raya, Indonesia

 

 

References

Aburizaizah, S. J. (2022). The role of quality assurance in Saudi higher education institutions. International Journal of Educational Research Open, 3. https://doi.org/10.1016/j.ijedro.2022.100127

Adedoyin, O. B. (2020). Quantitative Research Method Assignment. Near East University, 20(13), 8. https://www.researchgate.net/publication/340594619_Quantitative_Research_Method

Afriliana, I., Budihartono, E., & Maulana, A. (2017). Pengukuran Kinerja Dosen Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS). Jurnal Informatika: Jurnal Pengembangan IT, 2(2), 109–112. https://doi.org/10.30591/jpit.v2i2.609

Alzafari, K., & Ursin, J. (2019). Implementation of quality assurance standards in European higher education: does context matter? Quality in Higher Education, 25(1), 58–75. https://doi.org/10.1080/13538322.2019.1578069

Apriliani, D., & Somantri, O. (2019). Implementasi Metode Promethee Dalam Sistem Pendukung Keputusan Penilaian Raport Dosen. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 38–42. https://doi.org/10.30591/jpit.v4i1.1251

Bendermacher, G. W. G., oude Egbrink, M. G. A., Wolfhagen, H. A. P., Leppink, J., & Dolmans, D. H. J. M. (2019). Reinforcing pillars for quality culture development: a path analytic model. Studies in Higher Education, 44(4), 643–662. https://doi.org/10.1080/03075079.2017.1393060

Cao, Y., AlKubaisy, Z. M., Stojanović, J., Denić, N., Petković, D., Zlatković, D., & Zakić, A. (2022). Appraisal of information and communications technologies on the teaching process by neuro fuzzy logic. Computer Applications in Engineering Education, 30(3), 779–802. https://doi.org/10.1002/cae.22486

Fitrah, M., Ruslan, ., & Hendra, . (2018). Urgensi Sistem Penjaminan Mutu Internal Terhadap Peningkatan Mutu Perguruan Tinggi. Jurnal Penjaminan Mutu, 4(1), 76. https://doi.org/10.25078/jpm.v4i1.400

Herni. (2022). Manajemen Sistem Penjaminan Mutu Internal (SPMI) Dalam Meningkatkan Mutu Lulusan Perguruan Tinggi. Al-Afkar, Journal For Islamic Studies, 281–289. https://doi.org/10.31943/afkarjournal.v5i4.380

Jang, J. S. R. J. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

Mishra, S., Sahoo, S., & Mishra, B. K. (2019). Neuro-fuzzy models and applications. Emerging Trends and Applications in Cognitive Computing, 78–98.

Pawan, E., Thamrin, R. H. ., Hasan, P., Bei, S. H. Y., & Matu, P. (2021). Using Waterfall Method to Design Information System of SPMI STIMIK Sepuluh Nopember Jayapura. International Journal of Computer and Information System (IJCIS), 2(2), 33–38. https://doi.org/10.29040/ijcis.v2i2.29

Pȩkala, B. (2019). Introduction to Fuzzy Sets. Studies in Fuzziness and Soft Computing, 367, 1–20. https://doi.org/10.1007/978-3-319-93910-0_1

Samudra, A. A., & Sumada, I. M. (2021). Sistem Penjaminan Mutu Internal. Perspektif, 1(1), 11–21. https://doi.org/10.53947/perspekt.v1i1.54

Stukalo, N., & Lytvyn, M. (2021). Towards sustainable development through higher education quality assurance. Education Sciences, 11(11). https://doi.org/10.3390/educsci11110664

Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15–33. https://doi.org/10.1016/0165-0114(88)90113-3

Sulaiman, A., & Wibowo, U. B. (2016). Implementasi Sistem Penjaminan Mutu Internal Sebagai Upaya Meningkatkan Mutu Pendidikan Di Universitas Gadjah Mada. Jurnal Akuntabilitas Manajemen Pendidikan, 4(1), 17. https://doi.org/10.21831/amp.v4i1.8197

Yahya, Z., & Hidayati, F. (2015). Analisis kompetensi terhadap penilaian kinerja dosen (studi kasus dosen UIN Sultan Syarif Kasim Riau). Kutubkhanah : Jurnal Penelitian Sosial Keagamaan, 17(1), 104–126. http://ejournal.uin-suska.ac.id/index.php/Kutubkhanah/article/view/812

Yang, B., Yao, Z., Lu, H., Zhou, Y., & Xu, J. (2020). In-classroom learning analytics based on student behavior, topic and teaching characteristic mining. Pattern Recognition Letters, 129, 224–231. https://doi.org/10.1016/j.patrec.2019.11.023