Pemetaan Daerah Di Kabupaten Landak Berdasarkan Tingkat Kekeringan Berbasis Penginderaan Jauh
DOI:
https://doi.org/10.21067/jpig.v9i1.9761Keywords:
pemetaan, , kekeringan, , penginderaan jauhAbstract
The drought conditions in Landak Regency are meteorological droughts caused by a decrease in rainfall intensity. This results in a need for more water supply to meet the community's clean water needs. To reduce the widespread impact of this drought disaster, this research aims to conduct a spatial study to provide information for making decisions in handling drought. The method used in this research is the Normalized Difference Drought Index (NDDI), which combines the values of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). This research shows that Landak Regency is classified as moderately dry with a score range of 0.31-0.65 with a total area of 770,493.25 ha. Meanwhile, a high level of drought with a score of >1 covers an area of 17,881.11 ha. Districts with high levels of drought are concentrated in Ngabang and Mandor Districts. These two sub-districts are the centre of economic growth in Landak Regency, with the highest population density.
References
Aini, R. N., Saraswati, R., & Wibowo, A. (2019). Pola Sebaran Kekeringan Lahan Pertanian Kabupaten Serang Dengan Menggunakan Algoritma NDDI.
Ardiansyah, W., Nuarsa, W., Bagus, I., & Bhayunagiri, P. (2021). Analisis Daerah Rawan Bencana Kekeringan Berbasis Sistem Informasi Geografis di Kabupaten Bondowoso Provinsi Jawa Timur. Tropika, Jurnal Agroekoteknologi, 10(4), 417–427. https://ojs.unud.ac.id/index.php/JAT417
Cheval, S., Dumitresc, A., Busuloc, A., & Birsan, M. V. (2014). Spatiotemporal Variability of The Meteorological Drought in Romania Using the Standardized Precipitation Index (SPI). Jurnal Geografi Media Pengembangan Ilmu Dan Profesi Kegeografian, 60(3), 235–248. https://www.researchgate.net/publication/264467702
Dwi Priyono, K., & Ardhi Rachmawati, L. (2023). IDENTIFIKASI KEKERINGAN LAHAN PERTANIAN BERDASARKAN METODE TEMPERATURE VEGETATION DRYNESS INDEX (TVDI) PADA CITRA LANDSAT-8 OLI/TIRS DI KABUPATEN MADIUN JAWA TIMUR. 21(2), 139–151. https://doi.org/10.35580/lageografia.v21i2.38791
Fathony, A., Somantri, L., & Sugito, N. T. (2022). Analisis Potensi Kekeringan Pertanian di Kabupaten Bandung. Jurnal Geografi : Media Informasi Pengembangan Dan Profesi Kegeografian, 19(1), 29–37. https://doi.org/10.15294/jg.v19i1.33724
Hidayati, I. N., & Suryanto. (2015). Pengaruh Perubahan Iklim terhadap Produksi Pertanian dan Strategi Adaptasi pada Lahan Rawan Kekeringan. Jurnal Ekonomi Dan Studi Pembangunan, 42–52.
Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application of the Standardized Precipitation Index (SPI) in Greece. Water (Switzerland), 3(3), 787–805. https://doi.org/10.3390/w3030787
Purnomo, S., Halik, G., Dhokhikah, Y., Ulil Absari, R., & Salsa, A. (2021). Penilaian Bencana Kekeringan dan Strategi Penyediaan Air Bersih di Wilayah Utara Kabupaten Lumajang. Jurnal Teknik Pengairan, 12(2), 92–103. https://doi.org/10.21776/ub.pengairan.2021.012.02.02
Rosmiati. (2017). EKSPLANASI ILMIAH DAMPAK EL NINO LA NINA. In Jurnal BiologiandPendidikan Biologi (Vol. 2, Issue 1). https://journal.unwir.ac.id/index.php/mangiferaedu|32
Sukmono, A., Rahman, F., & Darmo Yuwono, B. (2018). PEMANFAATAN TEKNOLOGI PENGINDERAAN JAUH UNTUK DETEKSI KEKERINGAN PERTANIAN MENGGUNAKAN METODE NORMALIZED DIFFERENCE DROUGHT INDEX DI KABUPATEN KENDAL. In JURNAL GEOGRAFI VOLUME (Vol. 14, Issue 2). http://journal.unnes.ac.id/sju/index.php/ujet
Widiantoro, N. (2022). Analisis Daerah Rawan Kekeringan Berbasis Sistem Informasi Geografis di Kabupaten Kulon Progo. Universitas Muhammadiyah Surakarta.