SMARTICS Journal, Vol.11 No.02 2025. p45-52 45
ISSN online: 2476-9754, ISSN print: 2623-0429
DOI : https://doi.org/10.21067/smartics.v11i2.13749

Analisis Komparatif Efektivitas dan
Kapabilitas Implementasi Laboratorium
Virtual Internet of Things (10T) Berbasis

Emulas1 Mikrokontroler dengan Dukungan
MicroPython

San Vitores Jemalut®, Muhammad Priyono Tri Sulistyanto®, Moh Ahsan®
*Program Studi Teknik Informatika, Universtas PGRI Kanjuruhan Malang, Malang, Indonesia
“correspondence email : m.priyono.ts@unikama.ac.id

Abstract—This research analyzes the implementation and effectiveness of virtual laboratories in Internet of
Things (IoT) education through microcontroller emulation, specifically with MicroPython support. Physical
infrastructure constraints and operational costs have prompted a shift in learning paradigms toward virtual
solutions. This paper compares the capabilities of two primary emulator categories—online solutions (Case Study:
Wokwi) and offline solutions (Case Study: QEMU/Espressif Fork)—based on accessibility, emulation fidelity, and
pedagogical effectiveness. The results indicate that online emulators like Wokwi excel in accessibility and ease of
end-to-end integration (Wi-Fi simulation), which has been proven to yield significant improvements in student
competency (average N-Gain score of 74.6%) in academic case studies. Functional case study implementation using
Wokwi with Thingsboard demonstrates effectiveness in illustrating end-to-end IoT workflows from virtual sensors
to the cloud via the MQTT protocol. Conversely, QEMU provides deeper register-level emulation accuracy,
establishing it as a vital instrument for advanced firmware development and debugging. A hybrid implementation
model and the use of free cloud platforms are recommended for introductory-level education.

Index Terms— Virtual Laboratory; Internet of Things; MicroPython; Microcontroller Emulation; N-Gain
Score

Abstrak—Penelitian ini menganalisis implementasi dan efektivitas laboratorium virtual (Virtual Lab) dalam
pendidikan Internet of Things (IoT) melalui emulasi mikrokontroler, khususnya dengan dukungan bahasa
pemrograman MicroPython. Keterbatasan infrastruktur fisik dan biaya operasional mendorong pergeseran
paradigma pembelajaran menuju solusi virtual. Makalah ini membandingkan kapabilitas dua kategori
emulator utama—solusi online (Studi Kasus: Wokwi) dan solusi offline (Studi Kasus: QEMU/Espressif Fork)—
berdasarkan faktor aksesibilitas, fidelitas emulasi, dan efektivitas pedagogis. Hasil menunjukkan bahwa
emulator online seperti Wokwi unggul dalam aspek aksesibilitas dan kemudahan integrasi end-to-end (Simulasi
Wi-Fi), yang terbukti menghasilkan peningkatan kompetensi peserta didik yang signifikan (N-Gain score rata-
rata 74,6%) dalam studi kasus akademik. Implementasi studi kasus menggunakan Wokwi dengan Thingsboard
membuktikan efektivitas dalam mendemonstrasikan alur kerja IoT dari sensor virtual ke cloud melalui
protokol MQTT. Sementara itu, QEMU menawarkan akurasi emulasi tingkat register yang lebih dalam,
menjadikannya instrumen penting untuk pengembangan dan debugging firmware tingkat lanjut. Disarankan
sebuah model implementasi hibrida dan pemanfaatan platform cloud gratis untuk pembelajaran tingkat
pengantar..

Kata Kunci— Laboratorium Virtual; Internet of Things; MicroPython; Emulasi Mikrokontroler; N-Gain

I. PENDAHULUAN

Domain Internet of Things (IoT) telah bertransisi menjadi pilar fundamental yang mendorong revolusi
Industri 4.0. Penguasaan kompetensi interdisipliner yang mencakup pemrograman sistem embedded,
komunikasi jaringan (Wi-Fi, MQTT), dan integrasi cloud adalah esensial [1]. Meskipun demikian,
penyediaan fasilitas pendidikan IoT secara konvensional menghadapi kendala signifikan, utamanya terkait
biaya pengadaan, pemeliharaan perangkat keras (misalnya, mikrokontroler ESP32, sensor, dan aktuator),
serta masalah skalabilitas untuk memenuhi rasio perangkat per siswa yang memadai. Keterbatasan
infrastruktur fisik ini, sebagaimana didokumentasikan dalam studi kasus spesifik, menyoroti defisit

46 SMARTICS Journal, Vol.11 No.02 2025. p45-52

ketersediaan perangkat praktikum IoT dan mitigasi pemahaman konseptual siswa sebagai permasalahan
prioritas yang harus diatasi dalam konteks pengajaran kejuruan [2] .

Oleh karena itu, adopsi laboratorium virtual menjadi imperatif strategis. Laboratorium virtual
menawarkan skalabilitas tak terbatas, pengurangan biaya operasional, dan peningkatan aksesibilitas, secara
efektif memitigasi hambatan yang timbul dari infrastruktur fisik konvensional.

Dalam ranah sistem embedded, perbedaan antara emulasi dan simulasi adalah krusial. Emulasi
didefinisikan sebagai replikasi akurat perilaku Central Processing Unit (CPU), memori, dan periferal, yang
memungkinkan firmware asli dieksekusi dalam lingkungan virtual. Sebaliknya, simulasi lebih berfokus
pada replikasi fungsionalitas sistem pada tingkat logis.

Untuk mencapai validitas pedagogis yang tinggi dalam pembelajaran loT, emulasi wajib bersifat tingkat
lanjut. Simulasi I/O statis tidak memadai untuk mencapai tujuan pembelajaran yang berfokus pada
konektivitas. Esensi lIoT adalah komunikasi, sehingga kemampuan emulator untuk mereplikasi fitur
konektivitas kritis, seperti simulasi Wi-Fi, menjadi faktor kausal [2], [3].

Ketersediaan simulasi Wi-Fi, yang merupakan fitur unggulan dari simulator online mutakhir,
memfasilitasi peragaan aliran data ujung ke ujung (End-to-End Data Flow). Hal ini secara langsung
memungkinkan praktik integrasi dengan platform IoT eksternal (misalnya, Thingsboard). Kemampuan
untuk memverifikasi koneksi cloud tanpa kompleksitas konfigurasi jaringan fisik adalah validasi utama
efektivitas pedagogis virtual lab. Dengan mengeliminasi hambatan networking fisik, peserta didik dapat
mengalihkan fokus ke lapisan protokol aplikasi (MQTT atau HTTP), yang merupakan inti dari rekayasa
sistem IoT [4].

II. TINJAUAN PUSTAKA

MicroPython, sebuah implementasi bahasa Python 3 yang dioptimalkan untuk lingkungan
mikrokontroler, memegang peranan vital dalam mempercepat kurva pembelajaran di bidang IoT. Dengan
mereduksi kompleksitas sintaksis dari bahasa pemrograman tingkat rendah seperti C/C++, MicroPython
memungkinkan peserta didik untuk berkonsentrasi pada logika IoT, desain sistem, dan interaksi perangkat
keras.

MicroPython memiliki portabilitas yang ekstensif, mendukung hampir seluruh arsitektur mikrokontroler
IoT utama, termasuk seri ESP32, ESP8266, RP2040 (Raspberry Pi Pico), dan STM32 [5]. Fleksibilitas ini
menjamin bahwa kompetensi yang diperoleh dalam laboratorium virtual menggunakan MicroPython
bersifat transferable dan dapat diterapkan pada beragam hardware fisik.

Fitur inti MicroPython adalah Read-Evaluate-Print Loop (REPL), yang memfasilitasi interaksi real-time
dengan mikrokontroler [6]. REPL sangat penting untuk proses debugging interaktif. Oleh karena itu, setiap
lingkungan emulasi yang digunakan harus mampu mereplikasi shell REPL ini, baik melalui port serial
virtual maupun mekanisme berbasis jaringan

Mikrokontroler keluarga ESP dari Espressif, khususnya ESP32, telah menjadi standar de facto dalam
prototyping dan pengembangan akademik IoT, didukung oleh integrasi fitur Wi-Fi dan Bluetooth [5], [6].
Arsitektur ini, yang umumnya berbasis CPU Xtensa, menyediakan platform yang efisien dan hemat biaya.

Implementasi MicroPython pada perangkat ini memerlukan flashing firmware MicroPython spesifik
(-bin file) ke memori mikrokontroler. Proses ini menciptakan lapisan runtime yang berbeda dari firmware
berbasis C/C++ (misalnya Arduino atau Espressif IDF). Dengan demikian, emulator harus mampu memuat
dan mengeksekusi konteks runtime MicroPython secara akurat.

Lingkungan REPL adalah fitur yang membedakan pengalaman pemrograman MicroPython dari tradisi
embedded sistem konvensional. Akses REPL secara fisik biasanya terjadi melalui port serial (UARTO),
terhubung ke GPIO1 (TX) dan GPIO3 (RX) dengan baudrate 115200 . Emulator harus menyediakan
terminal virtual yang memetakan output UART ini, memungkinkan eksekusi perintah Python secara
interaktif, yang ditandai dengan prompt >>> .

Selain REPL serial, MicroPython mendukung WebREPL, yang memfasilitasi akses prompt melalui
jaringan Wi-Fi, diakses via peramban. Fitur WebREPL ini memiliki relevansi tinggi untuk virtual lab
online. Emulator berbasis cloud yang memiliki kapabilitas simulasi jaringan, seperti Wokwi, dapat meniru
fungsi WebREPL. Interaksi terminal dapat dilakukan langsung melalui browser tanpa memerlukan
konfigurasi jaringan lokal, memberikan pengalaman REPL yang autentik dalam lingkungan cloud [5], [7].

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

SMARTICS Journal, Vol.11 No.02 2025. p45-52 47

III. METODE

Penelitian ini menggunakan metode tinjauan pustaka naratif [8] (narrative review atau traditional review)
untuk mengidentifikasi, menilai, dan menginterpretasikan literatur yang relevan mengenai laboratorium
virtual IoT berbasis MicroPython. Berbeda dengan tinjauan sistematis yang kaku, metode naratif
memberikan fleksibilitas untuk mendiskusikan perkembangan teknologi, membandingkan berbagai
platform emulasi, dan memberikan interpretasi holistik terhadap tren penelitian terbaru tanpa protokol
pencarian literatur yang ketat.

Literatur dikumpulkan melalui penelusuran pada pangkalan data akademik seperti Google Scholar, IEEE
Xplore, dan Science Direct menggunakan kata kunci yang dinamis, antara lain: "IoT virtual lab" atau
“Laboratorium virtual”, "MicroPython emulation", "Wokwi", dan "QEMU ESP32" . Pemilihan artikel
didasarkan pada relevansi tematik terhadap implementasi teknis mikrokontroler virtual dan efektivitasnya
dalam lingkungan pendidikan . Artikel yang dipilih mencakup studi eksperimental, laporan teknis, dan
dokumentasi resmi dari pengembang emulator yang diterbitkan dalam rentang waktu sepuluh tahun
terakhir.

Data yang diperoleh dari berbagai sumber disintesis secara kualitatif berdasarkan tema-tema utama yang
muncul dalam narasi pengembangan [oT . Fokus analisis meliputi aspek aksesibilitas platform (online vs.
offline), fidelitas emulasi terhadap perangkat keras asli, serta kemampuan dukungan konektivitas Wi-Fi
yang krusial bagi sistem IoT . Penulis memberikan interpretasi kritis terhadap kelebihan dan kekurangan
masing-masing metode berdasarkan data sekunder yang tersedia.

Meskipun artikel ini bersifat ulasan naratif, untuk memperkuat argumen mengenai efektivitas pedagogis,
penelitian ini juga menginkoporasi analisis data sekunder berupa hasil eksperimen pendidikan yang diukur
melalui Normalized Gain (N-gain) score . Metode ini digunakan untuk memvalidasi narasi mengenai
peningkatan kompetensi siswa setelah menggunakan alat emulasi tertentu dalam proses pembelajaran .

IV. HASIL DAN PEMBAHASAN

4.1. Implementasi Laboratorium Virtual Berbasis Emulator Online (Studi Kasus Wokwi)

Wokwi berfungsi sebagai simulator elektronik online berbasis cloud yang dieksekusi langsung di
peramban web, menghilangkan kebutuhan akan instalasi perangkat lunak lokal yang kompleks [9]. Hal ini
menghasilkan learning curve yang rendah dan tingkat aksesibilitas yang unggul.

Wokwi mendukung spektrum emulasi yang luas, termasuk platform populer seperti ESP32, ESP8266,
Arduino, STM32, dan Raspberry Pi Pico [9]. Platform ini secara eksplisit mendukung simulasi proyek
MicroPython. Selain CPU, Wokwi mensimulasikan berbagai periferal seperti layar, sensor, dan motor.

Diferensiator kunci Wokwi dalam kerangka pembelajaran IoT adalah kapabilitas simulasi Wi-Fi
terintegrasi. Kemampuan ini vital dalam memfasilitasi koneksi proyek yang diemulasikan ke jaringan
eksternal. Simulasi jaringan memungkinkan peragaan konsep IoT yang melibatkan komunikasi eksternal
secara fungsional, contohnya ESP32 NTP Clock atau MicroPython MQTT Weather Logger.

Simulasi Wi-Fi ini juga merupakan prasyarat teknis untuk integrasi dengan platform IoT cloud seperti
Thingsboard. Berdasarkan studi kasus akademis, Wokwi digunakan secara efektif untuk praktik IoT
berbasis ESP32 dan Thingsboard. Kemampuan ini memungkinkan siswa melewati kompleksitas setup
jaringan fisik dan langsung memfokuskan studi pada logika aplikasi dan lapisan protokol IoT. Dengan
demikian, Wokwi mempercepat pemahaman konsep IoT end-to-end dengan mengeliminasi hambatan
teknis perangkat keras jaringan.

Wokwi tidak bersifat monolithic; platform ini menawarkan ekstensi untuk Visual Studio Code (VS
Code). Integrasi ini memungkinkan pengembang dan siswa untuk menulis kode secara lokal dalam
lingkungan IDE profesional yang sudah familiar, sambil tetap memanfaatkan mesin simulasi cloud Wokwi.
Pendekatan blended ini mengkombinasikan aksesibilitas cloud dengan efisiensi alur kerja pengembangan
lokal.

Skenario implementasi fungsional di laboratorium virtual berfokus pada peragaan pengiriman data
sensor (suhwkelembapan) dari mikrokontroler ESP32 yang diemulasikan ke platform cloud Thingboard,
memanfaatkan MicroPython dan protokol Message Queuing Telemetry Transport (MQTT).

Proses ini dimulai di lingkungan emulasi online (Wokwi) dengan menyiapkan: (1) Mikrokontroler
Virtual (ESP32), (2) Periferal Virtual (Sensor DHT22 virtual), dan (3) Konfigurasi Jaringan Virtual.
Keunggulan simulasi Wi-Fi pada Wokwi memungkinkan proyek diemulasikan untuk terhubung ke internet
yang disimulasikan dan berinteraksi dengan layanan cloud eksternal.

Inti dari implementasi adalah skrip MicroPython (main.py) yang menjalankan fungsi-fungsi krusial:

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

48 SMARTICS Journal, Vol.11 No.02 2025. p45-52

Inisialisasi Wi-Fi Virtual: (1) Menginisialisasi koneksi jaringan menggunakan kredensial yang
diemulasikan, (2) Membaca data suhu dan kelembapan dari sensor virtual, (2) Pengiriman Data MQTT:
Menggunakan pustaka MicroPython MQTT untuk terhubung ke broker Thingsboard dan mengirimkan data
sensor ke endpoint telemetri. Pada saat kode berjalan di emulator, peserta didik berinteraksi dengan
dashboard Thingsboard. Langkah-langkah integrasi meliputi: (1) Registrasi Perangkat di Thingsboard
untuk mendapatkan Access Token yang berfungsi sebagai kredensial MQTT, dan (2) Penerimaan dan
Visualisasi Data dengan membuat dashboard visual (Widget) yang menampilkan grafik real-time dari data
yang dikirimkan oleh ESP32 virtual.

Model implementasi ini berhasil mendemonstrasikan alur kerja IoT end-to-end—dari pengambilan data
sensor di perangkat embedded (ditemulasikan) hingga visualisasi di cloud—tanpa memerlukan perangkat
keras fisik, memberikan bukti nyata efektivitas pedagogis virtual lab.

4.2 Implementasi Laboratorium Virtual Berbasis Emulator Offline (Studi Kasus QEMU)

Quick Emulator (QEMU) adalah emulator open-source yang memfasilitasi emulasi penuh sistem (full-
system emulation), mencakup CPU dan periferal. Espressif, produsen mikrokontroler ESP32, memelihara
fork QEMU spesifik yang dirancang untuk mendukung arsitektur ESP32. Fork ini secara akurat
mengimplementasikan emulasi CPU Xtensa, memori, dan beberapa periferal utama ESP32 [3].

QEMU untuk ESP32 diorientasikan untuk debugging tingkat register dan pengujian firmware yang
mendalam. Walaupun MicroPython bytecode dapat dieksekusi di atas emulasi CPU/memori QEMU, fokus
utama dukungan Espressif adalah pada debugging aplikasi yang dikembangkan menggunakan Espressif
IoT Development Framework (ESP-IDF) berbasis C/C++.

Pemanfaatan QEMU untuk ESP32 terikat erat dengan ekosistem pengembangan ESP-IDF. Proses
instalasi dan konfigurasi QEMU jauh lebih kompleks dibandingkan emulator berbasis browser. Pengguna
diwajibkan menginstal toolchain dan dependensi sistem spesifik (misalnya, libgcrypt20, libglib2.0-0, dan
libslirp0 pada sistem Linux) sebelum dapat menggunakan biner QEMU yang telah dikompilasi.

Ketergantungan pada toolchain lokal dan prasyarat instalasi yang ekstensif ini menimbulkan hambatan
pedagogis yang signifikan untuk laboratorium pengantar. Meskipun QEMU adalah perangkat yang kuat,
kompleksitas setup ini menempatkannya sebagai instrumen penelitian dan pengembangan (R&D) firmware
daripada sebagai alat pembelajaran massal yang mudah diakses. Eksekusi aplikasi di QEMU dilakukan
menggunakan perintah idf.py gemu monitor, yang menghubungkan konsol IDF Monitor ke port UART
yang diemulasikan.

QEMU unggul dalam emulasi deep pada lapisan register. Emulator ini mendukung pengujian 12C tanpa
perangkat keras fisik melalui emulasi sensor 12C virtual, seperti sensor TMP105. Kapabilitas untuk
memanipulasi keadaan hardware virtual secara langsung merupakan kekuatan utama QEMU yang
memfasilitasi pengujian skenario ekstrem dan validasi driver perangkat keras yang kritis.

4.3 Analisis Komparatif Mendalam Emulator IoT (Online vs. Offline)

Perbandingan terstruktur antara paradigma online dan offline adalah esensial untuk mengidentifikasi
instrumen yang paling tepat untuk tujuan pembelajaran spesifik. Emulator online (Wokwi) menawarkan
aksesibilitas dan kemudahan penggunaan yang superior. Pengguna hanya memerlukan peramban web,
menghilangkan dependensi pada sistem operasi lokal dan kebutuhan instalasi. Sebaliknya, emulator offline
(QEMU) membutuhkan instalasi toolchain yang spesifik dan kompleks.

Meskipun QEMU adalah open source, Total Cost of Ownership (TCO) QEMU dapat lebih tinggi di
lingkungan akademik karena kebutuhan akan dukungan teknis instruktur yang substansial untuk mengelola
lingkungan toolchain yang beragam.

Terdapat dikotomi fungsional dalam fidelitas emulasi antara kedua paradigma. Wokwi menyediakan
fungsionalitas yang broad (luas), berfokus pada visualisasi dan pengalaman pengguna, dengan simulasi
komponen visual dan I/O. Secara kritis, Wokwi secara eksplisit mendukung simulasi Wi-Fi dan koneksi
real-time ke platform IoT eksternal, yang fundamental untuk simulasi konsep IoT penuh. Sebaliknya,
QEMU menawarkan fungsionalitas yang deep (dalam). Fokusnya adalah pada emulasi CPU, memori, dan
register secara akurat. Meskipun cakupan periferal yang diemulasikan (misalnya, sensor 12C virtual) lebih
terbatas, tingkat akurasinya pada lapisan hardware jauh lebih tinggi. QEMU lebih berorientasi pada
pengujian firmware inti, dan simulasi jaringan tingkat tinggi untuk koneksi cloud eksternal lebih menantang
dibandingkan lingkungan online. Tabel 1 berikut menyajikan ringkasan perbandingan teknis dan
operasional antara emulator online dan offline dalam konteks pembelajaran IoT berbasis MicroPython.

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

SMARTICS Journal, Vol.11 No.02 2025. p45-52

49

Tabel 1 Perbandingan Teknis Spesifik (Wokwi vs. QEMU)

Aspek Komparasi Emulator Online (Contoh: Wokwi) Emulator Offline (Contoh: QEMU)
Aksesibilitas Sangat Tinggi (Hanya butuh Rendah hingga Menengah
peramban/browser), tidak tergantung (Membutuhkan instalasi perangkat
OS lokal. lunak dan toolchain spesifik).
Kebutuhan Sangat Rendah (Ringan, semua Tinggi (Membutuhkan CPU dan RAM
Hardware Lokal komputasi di cloud). yang cukup untuk menjalankan

Simulasi Jaringan
(Iot)

Debugging Tingkat
Rendah

Kurva
Pembelajaran

Dukungan
Micropython
(Eksekusi)

Jenis Emulasi
Simulasi Periferal

Integrasi Ide

Kesesuaian Target
Pengguna

Unggul (Simulasi WiFi/Koneksi
real-time ke broker MQTT/Platform
IoT dimungkinkan).

Terbatas (Fokus pada kode tingkat
tinggi/MicroPython REPL).

Landai (Intuitif, desain grafis).

Penuh (Langsung melalui browser).

Simulasi Fungsional dan Logika
Perangkat Keras.

Luas (Sensor populer, display, motor,
I/0 digital/analog).

VS Code Extension tersedia.

Pendidikan, Prototyping Cepat.

simulasi/VM).

Terbatas (Membutuhkan networking
kompleks/virtualisasi, fokus pada low-
level stack).

Sangat Unggul (Akses penuh ke CPU,
memori, register, GDB).

Curam (Membutuhkan pemahaman
arsitektur sistem operasi dan
toolchain).

Tidak langsung (Membutuhkan
flashing firmware MicroPython ke
emulasi hardware).

Emulasi Penuh Sistem (CPU, Memori,
Register).

Terbatas namun deep (CPU, Memori,
UART, 12C virtual sensor TMP105).
Terintegrasi erat dengan Espressif IDF
melalui idf.py gemu monitor.
Pengembang Firmware, Debugging
Sistem Kritis, Riset Teknis.

4.3. Analisis Komparatif Platform Cloud IoT: Gratis vs. Berbayar
Pemilihan platform cloud merupakan komponen integral dalam desain Laboratorium Virtual IoT.

Platform cloud diklasifikasikan berdasarkan model biaya, yang secara signifikan memengaruhi fitur,
skalabilitas, dan kompleksitas implementasi.Platform gratis (misalnya, Thingsboard Community Edition,
ThingSpeak, Blynk, Ubidots Free Tier) ideal untuk konteks pendidikan, prototyping cepat, dan proyek skala
kecil [10]. Perbandingan kelebihan dan kekurangan dari penggunaan platform cloud IoT dapat dilihat pada
Tabel 2

Tabel 2 Kelebihan dan kekurangan platform cloud IoT gratis

Kelebihan

Kekurangan atau batasan

Biaya Nol: Eliminasi biaya awal, cocok untuk
eksperimen dan lingkungan akademik

Fleksibilitas Thingsboard CE: Bersifat open-
source, fleksibel dalam protokol (MQTT, CoAP,
HTTP), dan mendukung deployment lokal (self-
managed)

Kemudahan Penggunaan: Platform seperti Blynk
menawarkan antarmuka yang sangat intuitif,
memfasilitasi visualisasi data secara cepat

Keterbatasan Fitur: Tidak mencakup fitur canggih
seperti Advanced Role-Based Access Control
(RBAC), Single Sign-On (SSO), atau Reporting
yang dijadwalkan

Pembatasan =~ Skala: Keterbatasan jumlah
perangkat, volume data, dan laju pengiriman data
(misalnya, batasan pengiriman data per menit pada
ThingSpeak)

Dukungan Teknis Terbatas:
dukungan teknis yang terbatas

Ketersediaan

Sedangkan platform berbayar (misalnya, Thingsboard Professional Edition, AWS IoT Core, Azure IoT
Hub) dirancang untuk memenuhi kebutuhan skalabilitas industri, keamanan tingkat lanjut, dan integrasi
sistem yang kompleks, komparasi antara kelebihan dari platform IoT berbayar dapat ditampilkan pada

Tabel 3.

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(IoT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

50 SMARTICS Journal, Vol.11 No.02 2025. p45-52

Tabel 3 Kelebihan dan kekurangan platform cloud IoT berbayar atau profesional

Kelebihan Kekurangan dan Kompleksitas
Skalabilitas dan Keandalan Industri: Keandalan Biaya Tinggi: Membutuhkan biaya lisensi dan
tingkat industri dan integrasi mulus dengan operasional yang substansia

ekosistem layanan cloud yang lebih luas

(misalnya, AWS Lambda)

Fitur Lanjutan: Menawarkan fitur-fitur seperti Kurva Pembelajaran Curam: Kompleksitas yang

Advanced RBAC, SSO, White-Labeling, tinggi, memerlukan pemahaman mendalam

Reporting & Scheduling, dan Solution Templates tentang arsitektur cloud, kebijakan keamanan
(IAM/RBAC), dan model penetapan harga, yang
kurang sesuai untuk lingkungan pembelajaran
pengantar

Integrasi Sistem: Mendukung integrasi sistem

eksternal yang kompleks (misalnya, AWS IoT,

Azure IoT, Kafka)

Untuk Laboratorium Virtual tingkat pengantar yang berfokus pada MicroPython dan emulasi (seperti
Wokwi), penggunaan platform cloud gratis, khususnya Thingsboard Community Edition, sangat
direkomendasikan. Hal ini memungkinkan peserta didik untuk memfokuskan upaya pada logika coding dan
protokol IoT (MQTT) tanpa terhambat oleh kompleksitas konfigurasi akun cloud berbayar atau biaya
finansial. Platform berbayar sebaiknya dicadangkan untuk modul spesialisasi yang mensimulasikan
skenario enterprise tingkat lanjut (misalnya, stress test skalabilitas atau integrasi backend).

4.3. Evaluasi Kinerja dan Dampak Pedagogis Virtual Lab

Efektivitas implementasi virtual lab dievaluasi menggunakan metodologi standar akademik berupa pre-
test dan post-test, yang hasilnya dihitung melalui Normalized Gain (N-gain) score. Analisis N-gain
digunakan untuk mengukur keefektifan sebuah perlakuan pembelajaran dalam meningkatkan pemahaman
konsep peserta didik dengan membandingkan gain yang diperoleh dengan gain maksimum yang mungkin
didapat. Metode N-gain score dihitung menggunakan rumus yang diperkenalkan oleh Hake [11] sebagai
berikut:

_ Spost - Spre
Smax - Spre

Dimana g= Normalized Gain (N-gain), Spost = skor rata-rata post-test, Sy = skor rata-rata pre-test, dan
Smax = skor maksimum ideal. Hasil perhitungan N-gain kemudian diinterpretasikan ke dalam tiga kategori
klasifikasi menurut Hake (1998): Tinggi, jika g > 0.7; Sedang (Moderate), jika 0.3< g <0.7; dan Rendah,
jika g <0.3.

Studi kasus menunjukkan bahwa intervensi pelatihan yang mengaplikasikan simulasi Wokwi
menghasilkan luaran yang signifikan: peningkatan pengetahuan dan kompetensi siswa mengenai Sistem
IoT - ESP 32 Thingsboard seperti yang terlihat pada Tabel 4 .Tingkat kemampuan awal peserta pelatihan
(nilai rata-rata 33.00) dikategorikan rendah. Pasca-pelatihan, kemampuan peserta mengalami peningkatan
substansial dengan nilai rata-rata mencapai 83.00. Efektivitas pelatihan ini terkonfirmasi oleh N-Gain score
rata-rata sebesar 74,6% atau 0,746 [2], [4]. Berdasarkan kriteria Hake, skor tersebut termasuk dalam
kategori Tinggi (Efektif).Secara spesifik:Materi Pengenalan Thingsboard dan Wokwi mencapai N-Gain
76.0% (Efektif). Materi Pengenalan IoT mencapai N-Gain 71.6% (Efektif). Tingginya N-Gain score,
khususnya pada materi yang melibatkan Thingsboard dan Wokwi, mengindikasikan bahwa simulasi
berhasil mengeliminasi hambatan terkait perangkat keras dan setup jaringan yang sebelumnya menjadi
kendala utama. Hal ini memungkinkan peserta didik untuk secara efisien memfokuskan studi pada abstraksi
sistem [oT. Peserta dinyatakan mampu mengimplementasikan sistem IoT berbasis ESP32 dan Thingsboard
menggunakan simulasi Wokwi

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

SMARTICS Journal, Vol.11 No.02 2025. p45-52 51

Tabel 4 Peningkatan Kompetensi Siswa Melalui Simulasi Wokwi

Materi Pelatihan Nilai Awal Nilai Akhir N-Gain Tafsiran
(Pre-Test) (Post-Test) Score (%) Efektivitas
Tren Industri 4.0 33,00 84,00 76,1 Efektif
Pengenalan IoT 40,00 83,00 71,6 Efektif
Pengenalan Thingsboard dan Wokwi 25,00 82,00 76,0 Efektif
Rata-rata Keseluruhan 33,00 83,00 74,6 Efektif

Meskipun emulator menawarkan solusi skalabel, keduanya memiliki batasan inheren. Tantangan
implementasi Wokwi terletak pada keterbatasan emulasi untuk periferal yang sangat spesifik atau kustom,
serta perilaku timing yang sangat sensitif. Sebaliknya, QEMU menghadapi tantangan utama pada
kompleksitas instalasi dan konfigurasi yang tinggi, yang sulit untuk diterapkan dalam skala besar pada
lingkungan kelas yang heterogen

V. SIMPULAN

Implementasi laboratorium virtual dalam pembelajaran IoT melalui emulasi mikrokontroler dan
MicroPython terbukti sebagai pendekatan yang strategis dan efektif untuk memitigasi keterbatasan
perangkat keras fisik dan mengakselerasi kurva pembelajaran. MicroPython merupakan bahasa yang efisien
karena dukungan REPL dan kompatibilitasnya yang luas dengan platform [oT dominan.

Wokwi (Online) adalah instrumen yang unggul secara Pedagogis karena aksesibilitas universal dan
kapabilitas simulasi jaringan (Wi-Fi) yang memfasilitasi praktik konsep IoT end-to-end yang otentik. Bukti
empiris N-Gain score rata-rata 74,6% secara kuat mendukung keefektifan pedagogis Wokwi.

QEMU (Offline) adalah instrumen yang unggul untuk Pengembangan Mendalam dan Riset (R&D)
karena emulasi penuh sistem (CPU dan register) dan kemampuan debugging tingkat rendah (GDB) yang
didukung oleh fork resmi Espressif.

Untuk mencapai keseimbangan optimal antara efektivitas pedagogis dan kedalaman teknis,
direkomendasikan Model Laboratorium Virtual Hibrida (Blended Emulation). Solusi pertama ialah adopsi
Wokwi sebagai Komponen Pengantar. Wokwi digunakan untuk modul pengantar dan konseptual,
memfokuskan pembelajaran pada skrip MicroPython, REPL, dan integrasi cloud (MQTT/Thingsboard) .
Penggunaan platform cloud gratis diutamakan untuk menghilangkan hambatan teknis dan finansial. Sedang
solusi kedua adalah pemanfaatan QEMU untuk spesialisasi. QEMU dialokasikan di lingkungan terkontrol
untuk modul tingkat lanjut yang menuntut analisis arsitektur, timing kritis, atau debugging firmware tingkat
rendah. Solusi terakhir berupa integrasi lingkungan lokal. Dorongan penggunaan IDE lokal seperti Thonny
atau VS Code/Wokwi Extension untuk menjembatani manajemen kode online ke deployment offline.

Pengembangan emulator IoT di masa depan diprediksi akan bergerak menuju konvergensi
fungsionalitas, dengan emulator online berupaya meningkatkan fidelitas emulasi untuk menandingi akurasi
debugging tingkat register yang saat ini menjadi domain alat offline seperti QEMU. Hal ini akan semakin
memperkuat peran laboratorium virtual sebagai tulang punggung pendidikan teknologi di era digital.

DAFTAR PUSTAKA

[1] M. P. T. Sulistyanto, D. A. Nugraha, N. Sari, N. Karima, and W. Asrori, “Implementasi IoT
(Internet of Things) dalam pembelajaran di Universitas Kanjuruhan Malang,” SMARTICS
Journal, vol. 1, no. 1, pp. 20-23, 2015.

[2] Rahmawati, S. Amra, Hanafi, Ismaniar, and C. Yusnar, “Simulasi IoT berbasis ESP32 dan
Thingsboard Bagi Siswa SMKN 5 Kota Lhokseumawe,” in Proceeding Seminar Nasional
Politeknik Negeri Lhokseumawe, Lhokseumawe, Mar. 2024.

[3] “QEMU Emulator - ESP32 - — ESP-IDF Programming Guide v5.5.2 documentation.” Accessed:
Sep. 01, 2025. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/stable/esp32/api-guides/tools/qemu.html

[4] M. N. A. Nur, R. Prajono, Y. A. Koedoes, 1. Galugu, and A. Lolok, “Analisis Kebutuhan Sistem
Laboratoroium Virtual IoT Terintegrasi SPADA Universitas Halu Oleo,” Jurnal Fokus
Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika dan Kendali), vol. 9, no. 4, pp.
218-222, Nov. 2024, doi: 10.33772/JFE.V914.986.

[5] “MicroPython - Python for microcontrollers.” Accessed: Sep. 01, 2025. [Online]. Available:
https://micropython.org/

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

52

SMARTICS Journal, Vol.11 No.02 2025. p45-52

“MicroPython tutorial for ESP32 — MicroPython latest documentation.” Accessed: Sep. 01,
2025. [Online]. Available: https://docs.micropython.org/en/latest/esp32/tutorial/index.html
“Getting Started with MicroPython on ESP32 and ESP8266 | Random Nerd Tutorials.” Accessed:
Sep. 01, 2025. [Online]. Available: https://randomnerdtutorials.com/getting-started-micropython-
esp32-esp8266/

E. T. Rother, “Systematic literature review X narrative review,” Acta Paulista de Enfermagem,
vol. 20, no. 2, pp. v—vi, 2007, doi: 10.1590/S0103-21002007000200001.

“Welcome to Wokwi! | Wokwi Docs.” Accessed: Sep. 01, 2025. [Online]. Available:
https://docs.wokwi.com/?utm_source=wokwi

“Rekomendasi Platform IoT Terbaik & Gratis yang Cocok untuk Pemula.” Accessed: Jan. 16,
2026. [Online]. Available: https://www.cloudcomputing.id/pengetahuan-dasar/rekomendasi-
platform-iot

R. R. Hake, “Interactive-engagement versus traditional methods: A six-thousand-student survey
of mechanics test data for introductory physics courses,” Am. J. Phys., 1998, doi:
10.1119/1.18809.

Analisis Komparatif Efektivitas dan Kapabilitas Implementasi Laboratorium Virtual Internet of Things
(loT) Berbasis Emulasi Mikrokontroler dengan Dukungan MicroPython (San Vitores Jamalut)

