Behavioral intention pengguna smart home menggunakan UTAUT 2: Studi di Citraraya Tangerang
Main Article Content
Abstract
Real estate is experiencing changes due to technological advances. Smart homes have become the flagship product each other among housing developers. By using the UTAUT 2 model, the aim of this research is to investigate the variables that influence the behavioral intentions of smart home users. Quantitative studies were carried out through distributing questionnaires online. The results of the study revealed that social influence and facilitating conditions have an influence on behavioral intention. On the other hand, behavioral intention is not affected by performance expectancy, effort expectancy, hedonic motivation, habit, or price value. In addition, facilitating, habit, and behavioral intention have a positive impact on usage behavior.. It is hoped that this empirical knowledge will increase sales and collect good data to understand and apply this phenomenon.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Al-Gahtani, S. S., Hubona, G. S., & Wang, J. (2007). Information technology (IT) in Saudi Arabia: Culture and the acceptance and use of IT. Information & Management, 44(8), 681–691. https://doi.org/10.1016/j.im.2007.09.002
Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Quarterly, 29(3), 399–426.
Chan, F. K. Y., Thong, J. Y. L., Venkatesh, V., Brown, S. A., Hu, P. J. H., & Tam, K. Y. (2010). Modeling citizen satisfaction with mandatory adoption of an e-government technology. Journal of the Association for Information Systems, 11(10), 519–549.
Chan, K. Y., Gong, M., Xu, Y., & Thong, J. (2008). Examining user acceptance of SMS: An empirical study in China and Hong Kong. PACIS 2008 Proceedings, 294.
Chao, C.-M. (2019). Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in Psychology, 10, 1652. https://doi.org/10.3389/fpsyg.2019.01652
Curtis, L., Edwards, C., Fraser, K. L., Gudelsky, S., Holmquist, J., Thornton, K., & Sweetser, K. D. (2010). Adoption of social media for public relations by nonprofit organizations. Public Relations Review, 36(1), 90–92. https://doi.org/10.1016/j.pubrev.2009.10.003
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.1177/002224379102800305
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719–734. https://doi.org/10.1007/s10796-017-9774-y
Ghalandari, K. (2012). The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. Middle-East Journal of Scientific Research, 12(6), 801–807. https://doi.org/10.5829/idosi.mejsr.2012.12.6.2536
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition. In Essex: Pearson Education Limited, handbook.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hidayat, M. T., Aini, Q., & Fetrina, E. (2020). Penerimaan pengguna e-wallet menggunakan UTAUT 2 (Studi kasus). Jurnal Nasional Teknik Elektro Dan Teknologi Informasi| Vol, 9(3).
Khatimah, H., Susanto, P., & Abdullah, N. L. (2019). Hedonic motivation and social influence on behavioral intention of e-money: The role of payment habit as a mediator. International Journal of Entrepreneurship, 23(1), 1–9.
Kim, H.-W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111–126.
Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741–755. https://doi.org/10.1016/j.dss.2005.05.009
Kumala, S. (2019). Pengaruh Performance Expectancy, Effort Expectancy, Social Influence Dan Experiences Terhadap Behavioral Intention Pada Game Mobile Player Unknown’s Battleground (Pubg). Agora, 7(2), 1–6.
Lee, S. W., Sung, H. J., & Jeon, H. M. (2019). Determinants of continuous intention on food delivery apps: extending UTAUT2 with information quality. Sustainability, 11(11), 3141. https://doi.org/10.3390/su11113141
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817
Masykur, F., & Prasetiyowati, F. (2016). Aplikasi rumah pintar (smart home) pengendali peralatan elektronik rumah tangga berbasis web. Jurnal Teknologi Informasi Dan Dan Ilmu Komputer, 3(1), 51–58. https://doi.org/10.25126/jtiik.201631156
Monty, S., & Riski. (2021). Keren! Indonesia Pengguna Smarthome Terbesar di Wilayah Asia Pasifik. https://propertiindonesia.id/post/keren-indonesia-pengguna-smarthome-terbesar-di-wilayah-asia-pasifik
Tai, Y.-M., & Ku, Y.-C. (2013). Will stock investors use mobile stock trading? A benefit-risk assessment based on a modified UTAUT model. Journal of Electronic Commerce Research, 14(1), 67.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
Zhang, J., Liu, B., Tang, J., Chen, T., & Li, J. (2013). Social influence locality for modeling retweeting behaviors. Twenty-Third International Joint Conference on Artificial Intelligence.