




## Games in Junior High School Mathematics Learning: Sematic Literature Rivew

Ni Made Sri Utami Kusumayoni<sup>a,1,\*</sup>, Sariyasa<sup>a,2</sup>, I Gusti Putu Suharta<sup>a,3</sup>

<sup>a</sup>Mathematics Education, Post Graduate Programs, Ganesha University of Education, Bali, Indonesia

<sup>1</sup>kusumasriutami@gmail.com

<sup>2</sup>sariyasa@undiksha.ac.id

<sup>3</sup>putu.suharta@undiksha.ac.id

\*Corresponding Author

### ARTICLE HISTORY

#### Received:

September 25, 2025

#### Revised:

December 21, 2025

#### Published:

January 13, 2026

#### Keywords:

SRL

Math

Games

### ABSTRACT

Mathematics learning at the junior high school (SMP) level requires an approach that is able to bridge abstract concepts with students' learning experiences. One such approach is the use of games. Therefore, this study aims to systematically examine the form, innovation, research variables, methodological approaches, roles, and advantages and disadvantages of games in mathematics learning. The method used is Systematic Literature Review (SLR) with a qualitative descriptive approach, based on the PRISMA 2020 protocol. Data sources are obtained from relevant scientific articles published in Indonesian or English between 2016 and 2025. The results of the study showed that the games applied were very varied, namely: educational games, quiziz, matrig, multimedia, android-based, character-based math games, snake and ladder games, interactive word wall-based, web-based games, monopoly, unomath, online games, and ludo. In conclusion, games in mathematics learning have the potential to foster independent and meaningful learning and can be an alternative learning strategy that is adaptive to current developments, for example games: education, quiziz, matrig, multimedia, android-based, character-based, snake and ladder games, interactive word wall-based, web, monopoly, unomath, online games, and ludo. It is suggested that further research can design games to make learning more innovative.

Copyright © 2026 (Ni Made Sri Utami Kusumayoni, Sariyasa, & I Gusti Putu Suharta). All Right Reserved

Kusumayoni, N. M. S. U., Sariyasa, & Suharta, I. G. P. (2026). Games in junior high school mathematics learning: semantic literature rivew. *PI: Journal of Mathematics Education*, 9(1), 1-12. <https://doi.org/10.21067/pmej.v9i1.12940>



This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-sa/4.0/). Allows the reader to read, download, copy, distribute, print, search, or link to the full text of his or her article and allows the reader to use it for other legal purposes. The journal holds the copyright.

## 1. Introduction

Mathematics learning at the junior high school level has an important role in shaping students' logical and systematic mindsets. This is because mathematics trains individuals to analyze, and provides the cultivation of concepts that are useful for problem solving in everyday life [1]. Contextual and realistic mathematics learning is necessary so that students can see the relationship between the material taught and their daily lives, which can later increase interest in mathematics needs ([2],[3]). With this approach, students are not only taught to do calculations, but also to understand mathematical concepts in depth and in a practical way, to build a strong foundation for further learning ([4],[5]). However, the challenges faced by students in junior high school are quite significant. One of the main



<https://doi.org/10.21067/pmej.v9i1.12940>

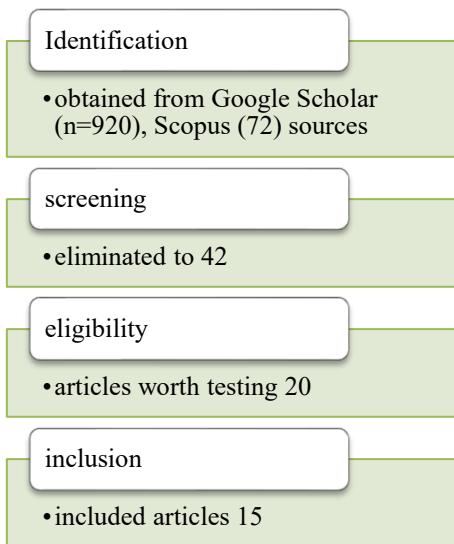
Email: pi@unikama.ac.id

problems is the low interest in learning mathematics, which can be caused by students' difficulty in understanding abstract concepts [6].

Conventional learning that is commonly applied in schools often has minimal interactivity and tends to be one-way, so it is less able to motivate students to be actively involved in the learning process ([7],[8]). Students only receive information provided by educators, so no student collaboration appears in the learning process [9]. A more active and participatory approach to teaching is needed to keep students interested [10]. By utilizing more interactive learning methods, students can be more engaged and contribute to the learning process ([11]–[13]). One of the innovative solutions that has emerged in mathematics learning is the use of Game as an alternative media. Games can create a fun and meaningful learning atmosphere, and engage students through context. Game is an alternative for teachers to increase students' motivation to learn ([14],[15]). In this context, Game can support the principles of active and constructivistic learning, where students have the opportunity to discover and understand concepts through hands-on experience, rather than just chasing grades or numbers ([16],[17]).

In-depth use Game In mathematics learning at the junior high school level is also important for systematic research, because many studies have been conducted, but there has not been an in-depth synthesis that discusses forms, types, and roles Game In this context [18]. Understanding mathematics is not only limited to technical skills, but also includes critical thinking and adaptability to dynamic changing learning situations [19]. Math learning with Game can affect important things such as comfort, joy, sense of community, increase the spirit of collaboration, never give up, train brain performance, perseverance and improve learning outcomes ([20],[21]). Therefore, further research on the application of Game In learning mathematics in junior high school should be a priority. There is a literature review study to systematically review previous studies on game-based mathematics learning in improving students' academic abilities.

## 2. Method


This study uses the *Systematic Literature Review* (SLR) with a qualitative descriptive approach to systematically review scientific articles that discuss the use of Games in mathematics learning at the junior high school (SMP) level. This SLR procedure follows the guidelines *Optional Reporting Items for Systematic Review and Meta-Analysis* ([12],[22]), ([23],[24]). The objectives of this systematic literature review are to: 1) Identify forms and innovations Game which is used in junior high school mathematics learning. 2) Classifying variables, research types, and roles Game in related research. 3) Analysis of the advantages and disadvantages of the application Game in mathematics learning in junior high school.

A literature search was conducted in two scientific databases, Google Scholar and Scopus. The search employed the keywords “math education games” and “math learning games,” along with their Indonesian equivalents. Searches were restricted to peer-reviewed journal articles published between 2016 and 2025, excluding conference proceedings and theses. Studies were included if they were written in English or Indonesian and addressed mathematics learning games for junior high school (or equivalent) students.

**Table 1. Inclusion and Exclusion Criteria**

| Inclusion Criteria                              | Exclusion Criteria                                                      |
|-------------------------------------------------|-------------------------------------------------------------------------|
| Articles on games in mathematics learning       | Articles don't discuss math learning                                    |
| Focus on junior high school level or equivalent | Levels outside of junior high school (elementary, high school, college) |
| Full text available                             | Only available in abstract form                                         |
| Publications in the last 10 years               | Publications before 2016                                                |
| Types of research other than literature reviews | Types of literature research reviews                                    |
| Publications in the form of articles, journals  | Publications outside of articles/journals such as theses etc            |
| Written in Indonesian or English                | Written in other languages                                              |

The article selection stage is carried out through 4 main stages: 1) Identification: Aggregate articles based on keywords from various databases. 2) Screening: Eliminating duplication and reading titles and abstracts for initial selection. 3) Eligibility: Evaluating the content of full-text articles based on inclusion/exclusion criteria. 4) Inclusion: Determine the final article to be analyzed. This process is visualized in the PRISMA flowchart. Articles that passed the selection were then analyzed thematically based on six problem formulations, paying attention to: 1) The form and type of game used. 2) Innovation in game media. 3) Research variables. 4) Type of research approach. 5) The function or role of the game in the research. 6) The advantages and disadvantages of games in learning. The results of the analysis are presented in the form of a synopsis table of the article, then explained in a descriptive narrative.



**Figure 1. Research Flow of Study Literature Review in Research on the Application of Game in Junior High School Mathematics Learning**

Based on Figure 1, 920 articles were identified, including 72 indexed in Scopus. During the screening stage, 42 articles were retained. At the eligibility stage, 20 articles were deemed eligible, and the final inclusion stage resulted in 15 included articles.

### 3. Results and Discussion

The results of this study present findings in the form of article titles, year of publication, type of game, research variables, main findings, and the role of games in Mathematics

learning at the junior high school level. The presentation of the findings is briefly presented in Table 2.

**Table 2. Results of a Literature Study on the Application of Games in Junior High School Mathematics Learning**

| Article Title                                                                           | Author & Year | Game Type                        | Types of Research                   | Key Findings                                                                             | Game Roles                                    | Advantages & Disadvantages                                    |
|-----------------------------------------------------------------------------------------|---------------|----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|
| Development of Computer-Based Mathematics Educational Games on Number Pattern Materials | [25]          | Computer-based games             | R&D (Formative evaluation /Tessmer) | The game is very feasible and effective to use, increasing motivation                    | Contextual and interactive media              | Worthy & Attractive; The evaluation process is time-consuming |
| Learn Mathematics through Quizizz Game Media to Improve Learning Outcomes               | [26]          | Quizizz Game (online quiz)       | PTK (Classroom Action Research)     | Learning outcomes increased from 63 → 78, students were more active and enjoyed learning | Fun digital quiz media                        | Practical, real-time; Need a stable connection                |
| MaTriG: Math Education Game with Construct 3                                            | [27]          | Platformer game (Construction 3) | R&D (ADDIE)                         | The MaTriG game is valid and practical for SPLDV learning                                | Android educational game-based learning media | Interactive, engaging; Limited testing on a small scale       |
| Multimedia Development of Junior High School Mathematics Learning Games                 | [28]          | Bubble Algebra (Bubble Puzzle)   | R&D (Plomp Model)                   | Valid, practical, and effective games improve algebra learning outcomes                  | A concrete and fun medium for algebraic forms | Amazing; Depends on the computer lab                          |
| Math Games Apps in Improving Math Calculation Skills                                    | [29]          | Android-based counter games      | Experiments (quasi-experiments)     | Games improve numeracy skills and interest in learning                                   | Interactive exercises for counting            | Effective, adaptive; Just focus on the basic calculations     |

| Article Title                                                                                                                        | Author & Year | Game Type                                                          | Types of Research | Key Findings                                                                                                                       | Game Roles                             | Advantages & Disadvantages                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Development of Mathematics Education Games to Improve Junior High School Numeracy Skills                                             | [30]          | Android-based math education on game using Adobe Animat e software | R&D (ADDIE)       | Android-based math education games using Adobe software are valid, effective and practical to improve mathematical numeracy skills | Improve numeracy skills                | Effective and practical; Focus on the material of the system per two-variable linear equation                                |
| Development of Character-Oriented Mathematics Game Project to Increase Learning Motivation of Grade VIII Junior High School Students | [31]          | Interactive math games (online games)                              | R&D (ADDIE)       | Interactive games increase the motivation to learn isswa, and the math game project is valid and practical.                        | Increase students' motivation to learn | Effective, practical, character-oriented, and interactive; Focus on functional material and must use stable internet service |
| Development of PERMUTATION (Material-Based Snake and Ladder Game) Learning Media for Junior High School Grade VIII                   | [32]          | Material-based snake ladder                                        | R&D (4D)          | This product is valid and worth using.                                                                                             | Mathematics learning innovations       | Valid Focus on validity only; Not measure practicality, and effectiveness                                                    |

| Article Title                                                                                                                                     | Author & Year | Game Type                                                 | Types of Research                                       | Key Findings                                                                                                          | Game Roles                                                        | Advantages & Disadvantages                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| The Use of Interactive Games Based on Wordwall as a Mathematics Learning Media for Junior High School Students                                    | [33]          | Interactive Wordwall-Based Games                          | R&D (4D)                                                | The product is declared valid and students can have an interest in learning and it is easy to understand the material | Increase interest and understanding of the material               | Effective, valid, and increases interest in learning; Focus on series and arithmetic material     |
| The Effectiveness of Web-Based Mathematics Learning Media and Educational Games on Improving the Learning Outcomes of Junior High School Students | [34]          | Web-based games                                           | experimental i.e. Pretest-Posttest Control Group Design | Improved student learning outcomes                                                                                    | Improved learning outcome                                         | Effective, valid, practical, educated; Must be used online                                        |
| Monopoly Game as an Interactive Question Practice Media for Junior High School Students                                                           | [35]          | Monopoly games                                            | R&D (ADDIE)                                             | Valid, practical, and effective                                                                                       | Improved learning outcome                                         | Effective, valid and practical; Focus on flat building materials and only available in print form |
| Unomath Beam: Game Integration as a Reinforcement of the Fractional Concept in Junior High School                                                 | [36]          | The game's product is named Unomat h Beam (Uno Math Beam) | Development of the Sugiyono model                       | valid, practical, and effective                                                                                       | Improved understanding of the mathematical concepts of fractional | Effective, valid, and practical; The scale of media development is still small and limited        |

| Article Title                                                                                                                       | Author & Year | Game Type         | Types of Research                        | Key Findings                                                         | Game Roles                                            | Advantages & Disadvantages                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| operations                                                                                                                          |               |                   |                                          |                                                                      |                                                       |                                                                                                              |
| The Use of Online Math Game Media to Improve Mathematical Representation Ability of Junior High School Students in Lhokseumawe City | [37]          | Online math games | Quasi-experiment                         | There is an increase in students' mathematical representation skills | Improve mathematical representation skills            | Effective, valid, and practical; The research sample is still small                                          |
| Development of Mathematics Uno Spin Card Game Media for Algebraic Mathematics Learning in Junior High School Students               | [38]          | Uno card          | R&D (Sugiyono)                           | There is an increase in the ability of Mathematics Algebra Material  | Improve the Mathematics Skills of Algebraic Materials | Effective, valid, and practical; Print form is not yet accessible online                                     |
| The Use of Ludo Game Media to Improve Students' Mathematics Learning Outcomes                                                       | [39]          | Ludi Games        | Quantitative with a descriptive approach | There is an improvement in line and angle material                   | Improve students' mathematics learning outcomes       | Effectively improve learning outcomes; Used for small scale and limited to quantitative descriptive research |

The results of the study show that Usage of the game In mathematics learning in junior high school varies greatly. Some are in the form of games education on Android, game types of adventures (platformers), interactive digital quizzes such as Quizizz, to board games game). Among them all, game digital is more often used because it provides flexibility for students to learn independently at any time, even outside of school hours. This shows that game It can be a flexible, engaging, and capable learning tool to help students better understand math concepts. Through learning-based learning game Learning environments

become more sporty, increase student engagement, motivation, and can create a context that supports effective learning ([40]–[42]).

The discussion in this study is lots game. It also has an innovative touch, both in terms of appearance, inserted story, and motivational gradual challenges. For example, in MaTriG game and The Adventures of Kolev, students are invited to explore and learn through interactive flows. The quiz/test feature in digital games can help students to develop self-assessment skills through the instant feedback provided which has the potential to increase students' liveliness and confidence, as they can see the progress of their comprehension first-hand [43].

In various studies, some aspects that are often researched include how well students understand the material, how independent they are in learning, and whether the games used are effective and fun. The results show that games not only help students understand the content of the lessons, but also encourage them to actively learn and organize their own way of learning. Most research uses a development (R&D) approach, experiments, or classroom actions. This approach emphasizes on how games are designed and tested directly on the field. This is proof that educational games that are seriously designed can really help students learn more independently and understand math concepts better, especially if they are tailored to their needs. In general, games in learning can prove to be a tool that supports students to learn without always relying on teachers.

Games make students more engaged and feel in control of the learning process. With attractively designed exercises, powerful visuals, and easy simulations, the understanding of concepts becomes stronger [44]. So it game make it easier for teachers to transfer information to students and be able to accommodate the characteristics and learning needs of students because game provide opportunities for students to learn according to their abilities and speed ([45] – [47]). Even so, there are also challenges, such as the limitations of technological devices, teachers' ability to manage learning-based learning game, and there have not been many long-term trials that have been conducted widely.

#### 4. Conclusion

Based on the systematic literature review, mathematics learning games for junior high school students have evolved into diverse forms and innovations. These games have the potential to promote independent and meaningful learning and may serve as an adaptive instructional strategy in response to current educational developments. The identified examples include educational games, Quizizz, MatriG, multimedia-based games, Android-based games, character-based games, *Snakes and Ladders*, interactive Wordwall-based games, web-based games, *Monopoly*, Unomath, online games, and *Ludo*. Further research is recommended to design and develop more innovative game-based approaches for mathematics instruction.

#### References

- [1] N. K. S. Purniawati and G. N. S. Agustika, “Interactive multimedia based on contextual approach material on number names and symbols for grade III elementary school students,” *Indonesian J. Instr.*, vol. 5, no. 2, pp. 263–273, 2024, doi: 10.23887/iji.v5i2.74472.
- [2] D. R. Sari and M. Bernard, “Analysis of junior high school students’ errors in solving statistical problems in West Bandung,” *J. Medives J. Math. Educ. IKIP Veteran Semarang*, vol. 4, no. 2, p. 226, 2020, doi: 10.31331/medivesveteran.v4i2.1060.
- [3] M. T. M. Tiara, “The effect of the MASTER learning model (motivating, acquiring, searching, triggering, exhibiting, and reflecting) assisted by GeoGebra on the mathematical concept understanding ability of grade VII students at SMP Negeri 8

Singaraja," *J. Educator. Matt. Undiksha*, vol. 14, no. 2, pp. 94–102, 2023, doi: 10.23887/jjpm.v14i2.65521.

[4] A. Jeheman, B. Gunur, and S. Jelatu, "The influence of the realistic mathematics approach on students' understanding of mathematical concepts," *Mosharafa J. Educator. Matt.*, vol. 8, no. 2, pp. 191–202, 2019, doi: 10.31980/mosharafa.v8i2.454.

[5] Musabbihan and Sariyasa, "Inquiry-based learning model assisted by Canva media on motivation and mathematics learning achievement," *J. Imiah Educator. and Learning*, vol. 8, no. 1, pp. 154–159, 2024, doi: 10.23887/jipp.v8i1.74257.

[6] N. D. Anggrainy and A. Sujadi, "Efforts to increase learning independence and mathematics learning achievement with a STAD (student team achievement division) cooperative learning model for grade VII students of Junior High School N 2 Sedayu," *UNION J. Ilm. Educators. Matt.*, vol. 4, no. 2, pp. 223–230, 2016.

[7] N. N. L. Handayani, "The effect of the implementation of realistic mathematics education on mathematics learning outcomes with numerical ability covariate," *J. Lampuh yang Lemb. Quality Assurance of STKIP Hindu Religion Amplapura*, vol. 11, no. 1, 2020.

[8] D. Yunitasari, I. W. Lasmawan, and I. Putu, "Innovative learning: Problem-based learning enhances character and learning outcomes in elementary schools," *Educ. Process Int. J.*, vol. 16, no. 1, 2025, doi: 10.22521/edupij.2025.16.202.

[9] I. Putra, I. Ariawan, and M. Juniantari, "The influence of Knisley's mathematics learning model on the critical thinking ability of class X students of MIPA SMA Negeri 2 Sempur," *J. Educator. Matt. Undiksha*, vol. 11, no. 2, pp. 51–61, 2020.

[10] A. A. A. Krisna and I. B. P. Aryana, "Problem based learning model assisted by animated video media on social science learning outcomes reviewed from the curiosity of students," *JEAR*, vol. 9, no. 1, pp. 134–144, 2025, doi: 10.23887/jeiar.v9i1.91892.

[11] A. Septiani, Y. Yuhana, and S. Sukirwan, "Development of LKPD to improve mathematical problem-solving skills: Systematic literature review," *J. Basicedu*, vol. 6, no. 6, pp. 10110–10121, 2022, doi: 10.31004/basicedu.v6i6.3782.

[12] I. P. P. Suryawan and I. G. P. Suharta, "Students' critical thinking skills in solving mathematical problems: Systematic literature review," *Indonesian J. Educ. Res. Rev.*, vol. 6, no. 1, pp. 120–133, 2023, doi: 10.23887/ijerr.v6i1.56462.

[13] S. Ndiung, Sariyasa, E. Jihadus, and R. A. Apsari, "The effect of Treffinger creative learning model with the use RME principles on creative thinking skill and mathematics learning outcome," *Int. J. Instr.*, vol. 14, no. 2, pp. 873–888, 2021.

[14] Karseno and Sariyasa, "Development of Android-based educational game media on integer topics in class VI elementary school," *J. Techno. Indonesian Learning.*, vol. 11, no. 1, pp. 16–25, 2021, doi: 10.23887/jurnal\_tp.v11i1.621.

[15] N. L. P. I. S. Devi and I. M. Ardana, "Development of Android-based snake and ladder educational game to improve critical thinking and collaboration," *J. Educator. and Indonesian Learning.*, vol. 5, no. 1, pp. 456–466, 2025.

[16] T. Aymajaya, A. Susanta, and T. Utari, "The effect of GBL on problem-solving ability," *JMPS*, vol. 7, no. 3, pp. 441–449, 2023.

[17] P. S. Prayoga, D. P. Parmiti, and I. G. Margunayasa, "Interactive learning multimedia containing Balinese traditional games in thematic learning," *Educ. Res. Rev.*, vol. 5, no. 16, p. 383, 2022.

[18] I. M. A. Darsana, I. M. Satyawan, N. L. P. Spyanawati, I. K. B. Astra, and K. Y. Parta Lesmana, "Video tutorial of game models in PJOK to support thematic learning theme 3 of my activities," *J. Undiksha Sports Science*, vol. 9, no. 3, 2021, doi: 10.23887/jiku.v9i3.39717.

- [19] S. N. Puspitasari, S. Suyono, and E. L. Astutiningtyas, “The effectiveness of the implementation of e-modules in improving the understanding of grade VIII students on number pattern materials during the pandemic,” *J. Math. Educ. Learn.*, vol. 1, no. 3, p. 274, 2021, doi: 10.19184/jomeal.v1i3.26773.
- [20] N. W. Pitriani and Sariyasa, “Game based learning oriented Kahoot! increasing the learning motivation of grade V elementary school students,” *J. Education*, vol. 13, no. 1, pp. 643–650, 2024.
- [21] K. T. Agustini and I. N. Suparta, “Improving computational thinking skills using educational games with a game based model,” *J. Media and Technology. Educators.*, vol. 4, no. 4, pp. 627–638, 2024, doi: 10.23887/jmt.v5i1.86440.
- [22] B. F. Al Fajrin, L. Karimah, N. Anisah, and H. A. Retno, “Analysis of students’ mathematical concept comprehension ability reviewed from the use of lecture method,” *Orig. Res.*, vol. 3, no. 1, p. 104, 2023.
- [23] M. Supratman and I. M. Ardana, “Exploration of mathematical creative thinking; patterns and processes,” *Media Educators. Matt. Stud. Educators. Matt.*, vol. 13, no. 1, pp. 392–401, 2025.
- [24] M. Turmuzi and I. G. P. Sudiarta, “Systematic literature review: Ethnomathematics of local wisdom of Sasak culture,” *J. Scholar J. Educator. Matt.*, vol. 6, no. 1, pp. 397–413, 2022, doi: 10.31004/cendekia.v6i1.1183.
- [25] A. S. Mubharokh, M. W. Afgani, and R. Paradesa, “Development of computer-based mathematics educational games on number pattern material,” *PYTHAGORAS J. Educator. Matt.*, vol. 16, no. 1, pp. 33–43, 2021, doi: 10.21831/pg.v16i1.34376.
- [26] D. A. Dermawan and A. Ramadhan, “Mathematics learning through the Quizizz game media to improve student learning outcomes,” *ALACRITY J. Educ.*, vol. 3, no. 1, pp. 381–390, 2024, doi: 10.52121/alacrity.v4i2.363.
- [27] S. Permatasari, M. Asikin, and N. R. Dewi, “Development of mathematics education game ‘MaTriG’ with Construct 3 software in junior high school,” *FIBONACCI J. Educator. Matt. and Matt.*, vol. 8, no. 1, pp. 21–30, 2022, doi: 10.24853/fbc.8.1.21-30.
- [28] H. Heru, “Multimedia development of junior high school mathematics learning games,” *J. Math Educ. Nusant.*, vol. 4, no. 1, p. 1, 2018, doi: 10.29407/jmen.v4i01.12003.
- [29] D. L. Hakim and R. M. M. Sari, “Application of mathematics games in improving mathematical calculation skills,” *J. Researcher. and Mat Learning.*, vol. 12, no. 1, pp. 129–141, 2019, doi: 10.30870/jppm.v12i1.4860.
- [30] Muhtarom, H. Adrillian, A. B. Huda, and M. Ribowo, “Pengembangan game edukasi matematika untuk meningkatkan kemampuan numerasi siswa SMP,” *Transformasi: Jurnal Pendidikan Matematika dan Matematika*, vol. 6, no. 2, pp. 95–108, 2022, doi: 10.36526/tr.v6i2.2176.
- [31] P. N. Periandani and I. N. Suparta, “Development of character-oriented mathematics game project to increase learning motivation of grade VIII junior high school students,” *J. Educator. Squirrel*, vol. 14, no. 2, pp. 542–550, 2024, doi: 10.37630/jpm.v14i2.1646.
- [32] B. Pudji and B. Bagus, “Development of PERMUTATION learning media (material-based snake and ladder game) mathematics for junior high school class VIII,” *Educator Union. Matt.*, vol. 9, no. 1, pp. 35–48, 2021.
- [33] R. Triyani, “The use of interactive games based on Wordwall as a mathematics learning media for junior high school students,” *IME*, vol. 1, no. 1, pp. 40–49, 2023.
- [34] S. Rahayu, M. Iqbal, and R. D. A. Budiman, “The effectiveness of web-based mathematics learning media and educational games on improving the learning

outcomes of junior high school students," *Educators. Inform. and Science*, vol. 10, no. 2, pp. 177–184, 2021, doi: 10.31571/saintek.v10i2.2281.

[35] Y. Suzana, N. Rahayu, R. Husna, and I. Maulida, "Monopoly games as interactive question practice media for junior high school students," *EDUCOFA J. Educator. Matt.*, vol. 1, no. 2, pp. 41–54, 2024.

[36] F. A. Astuti and R. M. Hariastuti, "Unomath Beam: Game integration as a reinforcement of the fractional concept in junior high school," in *National Panel Discussion on Mathematics Education*, 2024, pp. 251–264.

[37] R. Silviani, L. Rista, and C. Y. Eviyanti, "The use of online mathematics game media to improve the mathematical representation ability of junior high school students in Lhokseumawe City," *Cendikia J. Ilm. Educators.*, vol. 5, no. 1, pp. 501–509, 2021.

[38] A. Najiah, "Development of mathematics Uno Spin card game media for algebraic form mathematics learning in junior high school students," *Nas. Holist. Sci.*, vol. 1, no. 2, pp. 96–102, 2021.

[39] Y. E. Duarmas, Y. Batkunde, and Z. Bacori, "The use of Ludo game media to improve students' mathematics learning outcomes," *Prof. Educ. J.*, vol. 4, no. 1, pp. 1–10, 2022, doi: 10.29303/jm.v4i1.3236.

[40] A. Atoullo, A. Fitriani, and R. W. Daryono, "Exploring the influence of game-based learning and school environment on learning achievement: Does the mediation of self-intention matter?," *IJORER Int. J. Recent Educ. Res.*, vol. 5, no. 3, pp. 623–638, 2024, doi: 10.46245/ijorer.v5i3.597.

[41] S. Szilágyi, A. M. Takács, and A. Körei, "Using game-based learning for engaging with determinants in mathematics education at the university level," *Educ. Sci.*, vol. 15, no. 10, Art. no. 1329, 2025, doi: 10.3390/educsci15101329.

[42] D. Juandi, "Development of Ucing Sumput as a digital educational game to enhance students' mathematics achievement," *Math. Teach. Res. J.*, vol. 17, no. 2, p. 7, 2025, doi: 10.48161/qaj.v4n4a808.

[43] S. Masnu'ah, N. H. Aisyah, W. Uin, and I. Semarang, "The utilization of the Quizizz application in learning activity in Islamic religious education learning in madrasah," *Deduced. J. Education*, vol. 13, no. 1, pp. 595–604, 2024.

[44] K. Nachimuthu, "Role of educational games enhances meaningful learning," *i-Manager's J. Educ. Technol.*, vol. 8, no. 2, pp. 25–33, 2021, Available: ERIC (EJ1102028).

[45] Apriyanti and I. W. S. Warpala, "Realistic mathematics-based educational games to improve concept comprehension skills in mathematics subjects," *J. Techno. Indonesian Learning.*, vol. 14, no. 1, pp. 40–54, 2024.

[46] D. P. P. Sari, M. Murtono, and S. Utomo, "Development of social studies interactive learning media based on problem based learning and ladder snakes," *J. Educator. Edutama*, vol. 8, no. 1, p. 2, 2021, doi: 10.30734/jpe.v8i1.1305.

[47] M. U. Gusteti and W. Rahmalina, "GeoGebra augmented reality: An innovation in improving students' mathematical problem-solving skills," *IJE MST*, vol. 13, no. 3, p. 584, 2025, doi: 10.46328/ijemst.4872.