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Abstract: In undergraduate classrooms, while teaching chaos and fractals, it is taught as if 
there is no relation between these two. By using some non linear oscillators we demonstrate 
that there is a connection between chaos and fractals. By plotting the phase space diagrams 
of four nonlinear oscillators and using box counting method of finding the fractal dimension 
we established the chaotic nature of the nonlinear oscillators. The awareness that all chaotic 
systems are good fractals will add more insights to the concept of chaotic systems. 
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Introduction 

Most of the phenomena in nature do not show regular and periodic progress over time since 
there is an inherent randomness in all of them (Atakan et al., 2019; Öztürk, 2020). The random behavior 
of a process or a system over a period of time is called chaos. Some examples for chaotic systems 
include weather, rainfall over a large period, ocean turbulence, smoke plumes etc. (Shukla, 1998). 
Chaos theory is a mathematical field of study which states that non-linear dynamical systems that are 
seemingly random are actually deterministic (Biswas et al., 2018). Chaos theory, or deterministic chaos, 
may be traced back to mathematician Henri Poincare, working at the end of the 19th century, and more 
recently to meteorologist Edward Lorenz (Forgues & Thietart, 2016). Chaos theory begin with 
Poincare's study of three body problem and was confirmed after the experiments of Lorentz, who was 
a meteorologist. His key observation was the sensitive dependence of initial conditions. Slight changes 
in the initial values may result in large errors in the final value(Motter& Campbell, 2013). Using the 
chaos theory, we can understand a complicated system more easily or increase the predictability of the 
system. Now, with the advent of modern computers chaos is studied numerically to track the time 
evolution of the system with the changes in initial conditions (Cattani et al., 2017). 

Chaotic systems exhibit some types of interconnections, patterns and self-similarity. In 
undergraduate classrooms, students study the motion of a pendulum and in laboratories they find that 
the pendulums always exhibit periodic motion for all observations. Actually this is due to the strict 
restriction given by the teacher that the angular displacement must be small. But in reality, when the 
initial displacement is made large, the pendulums exhibit chaotic motion (Adams & Russ, 1992; 
Palmore, 1991). In nature many structures like mountains, clouds, leaves etc., have a structure that 
seem to be highly irregular in the first view, but when closely examined at different scales, repeated 
patterns are observed. Such structures are called fractals and self-similarity is one of the basic character 
of the fractals. There has been many studies connecting chaos and fractal (Boeing, 2016; Korolj et al., 
2019; Zhu et al., 2021).Here in this paper we give some simple techniques to establish the relationship 
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between chaos and fractals which may help the students to have a clarity of both chaos and fractals 
and to have an understanding of their relations. 

Methods for Detecting Chaos 

There are various methods for detecting chaos in a system (Özer & Akin, 2005). They are by 
plotting 

1. Phase space diagrams 
2. Time series 
3. Poincare maps 
4. Power spectrum 
5. Lyapunov exponents  
6. Bifurcation diagram. 

Phase space 

 Phase space is a 6N dimensional space with position and momentum co-ordinates. Each state 
of the system is represented by a unique point in phase space. As the system changes with time, the 
point traverses a path in the phase space called trajectory. If the system is chaotic the trajectory will 
pass through almost all the regions of phase space (Beale & Pathria, 2011). 

Time series 

 Time series analysis is used to study the dynamics and evolution of systems of any type. Its main 
aim is to extract information with a minimum number of parameters needed for approximating the 
data within a given interval (Andronov, 2020). We take a variable of the system in Y axis and time along 
X axis. By drawing the time series, we can check whether the motion is periodic or chaotic directly. 

Poincare section 

The Poincare section is the discrete set of phase space points of the system for each cycle. If T is 
the time taken for one cycle of motion, then after each T, Poincare section will give one point. But if 
the motion is periodic then the Poincare section will have only one point since the points after each T 
will be same. If the period is doubled it will have two points. Since chaotic motion is a period infinite 
motion, the Poincare section of a chaotic system will be filled by large number of points. 

Power Spectrum 

Chaotic signals are wideband signals. So by observing the frequency spectra we can easily 
distinguish chaotic signals from periodic signals. If the system is chaotic, then power spectra is 
expressed in terms of oscillations with a continuum of frequencies(Özer & Akin, 2005). 

Lyapunov exponents 

The logarithmic measure for the mean expansion rate per iteration of the distance between two 
infinitesimally close trajectories is the Lyapunov exponent of the system. A chaotic system will have a 
positive Lyapunov exponent. The paths of such systems are extremely sensitive to the initial conditions 
(Greiner, 2010). 

Bifurcation diagram 

 Bifurcation diagram shows the long term changes in the behaviour a system by varying the 
control parameter. For some values of the parameter, the system will have only one long term motion 
while for some other slightly different values, system may have two or three motions. This means the 
behaviour of the system depends on initial condition. In differential equations, if a change in the 
number of solution is depending on parameter variation, it is called bifurcation (Özer & Akin, 2005). 
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In this article we will study and plot phase space,time series and Poincare maps, because of their 
simplicity in understanding. We will use four nonlinear differential equations for the study. 

Linear and Nonlinear Differential Equations 

In our surroundings we come across many events like motion, heat flow, wind etc. In physics, we 
model them using differential equations whose solutions give the description of the systems. There are 
mainly two types of differential equations-Linear and nonlinear differential equations. Linear means 
that the variable in an equation appears only with a power of one. So x is linear but x2 is non-linear. 

1. In a differential equation, when the variables and their derivatives are only multiplied by 
constants, not functions, then the equation is linear, if the variables and their derivatives appear as a 
simple first power,  

x'' + x = 0,  the equation is linear. 
x'' + 2x' + x = 0,  is linear. 

But  x' +
1

𝑥
= 0   is non-linear because

1

𝑥
 is not a first power. 

 x' + x2 = 0  is non-linear because x2 is not a first power. 
Similarlyx'' + 𝑠𝑖𝑛(𝑥) = 0   is non-linear because 𝑠𝑖𝑛(𝑥)is not a first power,  since on expansion 

𝑠𝑖𝑛(𝑥) = x - 
𝑥3

3!
 + 

𝑥5

5!
 - ….. 

Againxx' = 1   is non-linear because x' is not multiplied by a constant, besides it can also be 

written as
𝑑

𝑑𝑡
(
𝑥2

2
) = 1. 

The above examples clearly differentiates a linear differential equation from a nonlinear 
differential equation(Arfken et al., 2013; Fusic & Kufner, 2014; Struble, 2018). 

Results and Discussions 

Here we will consider four most used and discussed nonlinear oscillators - Duffing oscillator, 
HenonHeiles oscillator, Quartic oscillator, and Van der pol oscillator. In the next subsections we will 
have a short description of these oscillators. 

Duffing oscillator 

The nonlinear equation describing an oscillator with a cubic non linearity is called the Duffing 
equation named after Georg Duffing, a German engineer (Kovacic & Brennan, 2011). The differential 
equation can be written as, 

𝒅𝟐𝒙

𝒅𝒕𝟐
+ 𝜹

𝒅𝒙

𝒅𝒕
+ 𝜶𝒙 + 𝜷𝒙𝟑 = 𝜸𝒄𝒐𝒔(𝝎𝒕)       (1) 

where the (unknown) function x = x(t) is the displacement at time t. The parameters in the 
Duffing equation are;𝛿  is the amount of damping,𝛼  is the linear stiffness, 𝛽  is the amount of non-
linearity in the restoring force; if𝛽 = 0, the Duffing equation describes a damped and driven simple 
harmonic oscillator, 𝛾 is the amplitude of the periodic driving force; if 𝛾= 0 the system is without a 
driving force and 𝜔 is the angular frequency of the periodic driving force. 

Many physical systems are conveniently modeled by the Duffing equation. For example, it is used 
to study the solutions of sine-Gordon equation, Klein–Gordon equation, nonlinear Schrodinger 
equation etc. (Humberto et al., 2021). The Duffing equation basically represents the motion of a 
damped, driven inverted pendulum with a torsional restoring force. 

The Hamiltonian of an undamped, unforced Duffing oscillator is, 

𝑯 =
𝟏

𝟐𝒎
𝒑𝒙
𝟐 +

𝟏

𝟐
𝜶𝒙𝟐 +

𝟏

𝟒
𝜷𝒙𝟒        (2) 

where 𝑝𝑥 is the momentum in x direction. 
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Henon Heiles oscillator 

 The Henon Heiles potential was developed by Michel Henon and Carl Heiles to check the 
possibility of a third isolating integral of motion in celestial mechanics(Henon& Heiles, 1964). The 
Hamiltonian of a Henon Heiles oscillator is 

𝑯 =
𝟏

𝟐
𝒑𝒙
𝟐 +

𝟏

𝟐
𝒑𝒚
𝟐 +

𝟏

𝟐
𝒙𝟐 +

𝟏

𝟐
𝒚𝟐 −

𝟏

𝟑
𝒚𝟑 + 𝒙𝟐𝒚      (3) 

where x, y are position and 𝑝𝑥 , 𝑝𝑦are momentum coordinates. 

Michel Henon and Carl Heiles while studying the galactic motion attempted to solve the question 
'Does an axisymmetrical potential admit a third isolating integral of motion?' by numerical 
computations (Henon & Heiles, 1964). They showed that this potential is equivalent to the problem of 
the motion a particle in a plane in an arbitrary potential U. After several trials they had taken the 
following potential for study 

𝑼(𝒙, 𝒚) =
𝟏

𝟐
𝒙𝟐 +

𝟏

𝟐
𝒚𝟐 −

𝟏

𝟑
𝒚𝟑 + 𝒙𝟐𝒚       (4) 

because it is analytically simple, this makes the computation of the trajectory easy and at the 
same time, it is sufficiently complicated to give trajectories which are far from trivial. Using this 
potential they have done several numerical computations and concluded that if the energy is small, it 

seems that a third isolating integral always exists (Henon & Heiles, 1964). For energy greater than
1

6
the 

oscillator is completely chaotic. By simply increasing the energy we can see the transition from an 
integrable system to a chaotic system. 

Quartic Oscillator  

 The differential equation for a pure quartic oscillator is 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝐾𝑥3 = 0           (5) 

and the Hamiltonian of a pure quartic oscillator is, 

𝐻 =
1

2𝑚
𝑝𝑥
2 +

1

4
𝐾𝑥4          (6) 

where x is the position and 𝑝𝑥 is the corresponding momentum. K is the force constant. 
Quartic oscillator model includes regular as well as chaotic systems. To study the chaotic 

behaviour we used a coupled quartic oscillator. The Hamiltonian for N=2 quartic oscillator is (Bannur, 
1998; Bannur et al., 1997) 

𝐻 =
1

2
𝑝1
2 +

1

2
𝑝2
2 +

1

2
𝑞1
4 +

1

2
𝑞2
4 +

𝛼

2
𝑞1
2𝑞2

2       (7) 

where 𝛼 is a parameter and q’s and p’s are generalized coordinates and momenta, respectively. 

Van der Pol oscillator 

Balthazar Van der Pol (van der Pol, 1926), a Dutch electrical engineer in his paper on "Relaxation 
oscillations" introduced a second order differential equation known as Van der Pol equation. The 
equation was similar to the one used with triode oscillators (Appleton & van der Pol, 1922; van der Pol, 
1920). Van der pol started with a damped harmonic oscillator, then modified the system with the 
resistance as negative. In order to avoid the amplitude becoming infinity, Van der pol modified the 
coefficient of resistance. The coefficient is taken as a function of amplitude which will become positive 
for large values (van der Pol, 1926). 

Van der pol equation became very popular quickly. Van der pol distinguished these oscillations 
as they differ from sinusoidal oscillations and he proposed the name relaxation oscillations. Now the 
Van der pol is used with a forcing term, which help to study the chaotic behavior (Ginoux & Letellier, 
2012). The Van der Pol oscillator is governed by the following equation (van der Pol, 1926): 

𝒅𝟐𝒙

𝒅𝒕𝟐
− 𝝁(𝟏 − 𝒙𝟐)

𝒅𝒙

𝒅𝒕
+ 𝒙 = 𝟎        (8) 
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It describes many physical systems collectively called van der pol oscillators. The parameter𝜇 is 
a positive scalar indicating the non linearity and strength of the damping. When 𝜇  = 0 there is no 

damping and the equation becomes,
𝑑2𝑥

𝑑𝑡2
+ 𝑥 = 0. 

In the next section, we will describe each oscillator in detail, how and when they become chaotic. 

Chaos a Pictorial Tour 

We can see, in order to show the transition from periodic to chaotic behaviour we draw the 
phase space, time series and Poincare map of the above nonlinear oscillators. We used Python 
programs to draw the diagrams. In the case of Duffing oscillator and Van der pol oscillator we wrote 
the program using the differential equation of the oscillators and in the case of HenonHeiles oscillator 
and coupled quartic oscillator we wrote the program by using Hamilton's canonical equations derived 
from the Hamiltonian of the oscillator since there are no other differential equations. 

Duffing Oscillator 

Phase Space 

We can see that on the first stage of oscillation, the system is in transient condition and there is 
no repetition in its motion. But after the initial transient, the motion is periodic and in Figure 1, we can 
see the periodic motion of a Duffing oscillator for 𝛾= 0.30.  

 

Figure 1. Phase space plot of Duffing oscillator for 𝜸= 0.3 

When 𝛾is changed, then the period gets doubled for 𝛾= 0.31,0.32,0.33 as shown in Figure 2. 

 

Figure 2. Phase space plots of Duffing oscillator for 𝜸= 0.31, 0.32, 0.33 

 But when 𝛾 becomes 0.331 the periodicity is lost and there is no sign of the data settling down. 
This motion is chaotic which is shown in Figure 3. 
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Figure 3. Phase space plot of Duffing oscillator for 𝜸= 0.331 

In Figure 4, the chaotic nature of Duffing oscillator is more evident for higher values of 𝛾= 0.34, 
0.35. 

 
Figure 4. Phase space plots of Duffing oscillator for 𝜸= 0.34, 0.35 

Time Series 

Time series showing the transition to chaos for various 𝛾values are plotted. In Figure 5 we can 
see the motion is periodic for 𝛾 = 0.30,0.31,0.32,0.33. and oscillator become chaotic when 𝛾= 0.331 
and more chaotic for 𝛾= 0.34, 0.35 which is plotted in Figure 6. 

 

 

Figure 5. Time series plots of Duffing oscillator for 𝜸= 0.30, 0.31, 0.32, 0.33 
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Figure 6. Time series plots of Duffing oscillator for 𝜸= 0.331, 0.34, 0.35 

Poincare Map 

We can also confirm the chaotic character by drawing the Poincare maps of Duffing oscillator for 
various 𝛾values. There are only a few points in the map for 𝛾= 0.31 and 0.33 as in Figure 7. 

 

 

 

Figure 7. Poincare maps of Duffing oscillator for 𝜸= 0.30, 0.31, 0.32, 0.33 

We can see the transition to chaotic state in Figure 8 for 𝛾= 0.331. 

 

Figure 8. Poincare map of Duffing oscillator for 𝜸= 0.331 
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For 𝛾= 0.34, 0.35 a large number of points are there in the Poincare map which ascertains the 
chaotic behaviour which is shown in Figure 9. 

 

 

Figure 9. Poincare maps of Duffing oscillator for 𝜸= 0.34, 0.35 

 

Henon Heiles Oscillator 

Phase Space 

Here we plotted the phase space of Henon Heiles oscillator in Figure 10 for different energies 

and we can see the transition from normal to a chaotic state. For E =
1

6
it is chaotic. 

 

 

Figure 10. Phase space plots of HenonHeiles oscillator for E =
𝟏

𝟏𝟔
,
𝟏

𝟏𝟐
,
𝟏

𝟖
,
𝟏

𝟔
 

One more graph is plotted, Figure 11, for energy E =
1

5
(𝑖𝑒, 𝐸 = 0.20)and from these graphs we 

can say that Henon Heiles oscillator is chaotic for energy greater than
1

6
(𝑖𝑒, 𝐸 > 0.167). 
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Figure 11. Phase space plot of HenonHeiles oscillator for E = 
𝟏

𝟓
 

Time Series 

 Time series showing the transition to chaos for different energies are plotted in Figure 12. 

 

 

Figure 12. Time series plots of HenonHeiles oscillator forE =
𝟏

𝟏𝟔
,
𝟏

𝟏𝟐
,
𝟏

𝟖
,
𝟏
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Poincare Map 

 Poincare maps are also plotted for the same set of energies in Figure 13. 
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Figure 13. Poincare maps of HenonHeiles oscillator forE =
𝟏
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Quartic oscillator 

Phase Space 

The phase space diagrams of quartic oscillator are plottedfor α = 0,2 in Figure 14 and the motion 
is periodic. 

 

Figure 14. Phase space plot of Quartic oscillator forα = 0 

The chaotic behavior can be observed for 𝛼 > 6and is very clear for high values of 𝛼(𝛼= 100, 
500) as shown in Figure 15. 

 

Figure 15. Phase space plot of Quartic oscillator forα = 100, 500 
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Time Series 

The time series of quartic oscillator for α = 0 is plotted in Figure 16 and for α = 100, 500 plotted 
in Figure 17. 

 

Figure 16. Time series plot of Quartic oscillator forα = 0 

 

 

Figure 17. Time series plot of Quartic oscillator forα = 100, 500 

Poincare Map 

The Poincare map for α = 0 is shown in Figure 18 and for α = 100, 500 are shown in Figure 19 
which clearly explain the transition from periodic to chaotic behaviour. 

 

Figure 18. Poincare map of Quartic oscillator forα = 0 

 

Figure 19. Poincare maps of Quartic oscillator forα = 100, 500 
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Van der pol oscillator 

Here we shown the chaotic nature of Van der pol oscillator only to some extent because of the 
low processing speed of the computer. With high speed computers we can draw the plots for larger 
time interval which can show the chaotic behavior more explicitly.  

Phase Space 

 The phase space diagram for 𝜇 = 0.01,10,1000 are plotted in Figure 20 which is chaotic. 

 

Figure 20. Phase space plots of Van der pol oscillator for𝝁 = 0.01,10,1000  

Time Series 

Here we confirm the chaotic nature of Vander pol oscillator by drawing the time series for 𝜇 = 
0.01,10,1000 in Figure 21. Now let us have a brief idea about fractals in the next section. 

 

 

Figure 21. Time series plots of Van der pol oscillator for𝝁 = 0.01,10,1000  

Fractals 

A fractal is an object that looks similar in different scales. In nature many objects that has an 
irregular shape in normal view has repeated patterns which can be seen on magnification. The word 
fractal was given by Benoit Mandelbrot in 1975 (Mandelbrot, 1982). It was obtained from the Latin 
word fractus meaning fractured. Mathematically a fractal is obtained by the process called iteration. 
Practically different parts of the object are removed repeatedly to form a fractal structure.  
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Fractal dimension 

We live in a 3 -dimensional world. Look at the Figure 22. The mesh in background has squares 
with unit length for their sides. We have three objects a line, a square and a cube which are named a, 
b and c. Here our straight line has length of 3 units. If we divide the straight line to parts, each with 
length equal to side length of the mesh square, we get three pieces of straight lines. To make the 
original line of full length we have to enlarge each small line to three times. Hence we can write a 
relation for the dimension of objects as 

Number identical pieces = (incremental factor or scaling factor)D 

where D is the dimension of the object. 

For the line a we get 3=3D.This indicates that D=1. 

For the square b we get in similar manner 9=3D. This indicates that for square we have D=2. 

For the cube c we get 27=3D. In this case D=3 

 

Figure 22. Different shapes 

Thus generally we can say if n is the number of identical pieces and p is the scaling factor, we can 
write  

𝒏 = 𝒑𝑫 

Taking logarithm, we get expression for dimension as  

𝑫 =
𝒍𝒐𝒈𝒏

𝒍𝒐𝒈𝒑
 

The dimension in this form are called similarity dimension as the structures are considered as 
identical pieces to calculate the dimension. To characterize the trajectories of dynamical systems a 
spectrum of dimensions are introduced and box counting dimension, correlation dimension and 
information dimension are some among them that gained wide popularity(Mou et al., 2016; Rosenberg, 
2020). We will illustrate the box counting dimension in the next section using which we are going to 
find the fractal dimension for some chaotic systems. 

 Box-counting dimension 

 This is the most popular and commonly used method to calculate the fractional dimension (Mou 
et al., 2016; Thompson, 2016). In this method identical square boxes of side length k is placed on the 
object whose fractal dimension has to be found. The number of boxes n needed to cover the entire 
object is found and fractal dimension is found from the relation 

𝑫𝑩 = 𝒍𝒊𝒎
𝒌→𝟎

𝒍𝒐𝒈𝒏

𝒍𝒐𝒈
𝟏
𝒌

 

In practice, a plot of the number of identical boxes on a log-log graph and the scale gives a 
straight line, whose slope gives the fractal dimension. 
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Fractal dimension of non-linear systems 

 To find the fractal dimension of non-linear systems 2D plots of phase space diagrams that are 
plotted are used. The figures are first saved in a bitmap format. Then the dimension is found using 
Fractalyse software. Fractalyse is a free software available on the internet designed to find the fractal 
dimension of 2D patterns. The software was developed by G. Vuidel and co-workers in France. The 
software is widely used to study the fractal structure of different shapes. The software can be easily 
installed in a computer by downloading the executable file. The images are used in bitmap format for 
the analysis. To find the dimension, the images are opened from file menu and box counting method 
is chosen from analyse menu. The specific options used are 

File→ open 
Analyse → Box 

The new window emerged by this option gives the plot the number of boxes required to cover 
the object and scaling factor in a logarithmic scale.  

Non-linear oscillators like Duffing, Henon- Heiles, Quartic and Van der pol exhibit chaotic 
behavior in their phase portrait at certain values (Tarnopolski, 2013). We found the fractal dimension 
of the above four oscillators using Fractalyse software when they are chaotic. For Duffing oscillator 

when 𝛾  = 0.331, fractal dimension is 1.798. For a Henon Heiles oscillator with energy, E = 
1

6
  fractal 

dimension is 1.738. For the phase space plot of Quartic oscillator at 𝛼  = 100 we got the fractal 
dimension of 1.78. In the case of a Van der pol oscillator fractal dimension is 1.331 for 𝜇= 1000. 

The fractal dimension of regular geometrical shapes matches with the Euclidean dimension, the 
fractal dimension of a line is 1 and the fractal dimension of a square is 2. A curve with fractal dimension 
1.08 behaves like a line because the dimension is close to 1. The fractal dimension of a circle, which 
can be treated as an extended curve, is 1.15 which is not a good fractal. 

The fractal dimensions of the nonlinear oscillators we have discussed are shown in Table 1, which 
shows their fractal character. Here all the oscillators are having fractal dimension greater than 1.5 
except Van der pol oscillator. But for Van der pol oscillator if we can plot the phase space for large 
values of time, we anticipate that the fractal dimension will be more than 1.5. Hence we can say that 
all the four oscillators are good fractals. 

Table 1. Dimensions of the Nonlinear Oscillators 

Serial No. Oscillator Fractal dimension D 

1 Duffing 1.798 
2 HenonHeiles 1.738 
3 Quartic 1.78 
4 Van der pol 1.331 

Conclusion 

In this article we have made a brief description about chaos and the methods for detecting chaos. 
Chaos are observed usually in nonlinear differential equations. So we explained the difference between 
linear and nonlinear differential equations.  Then we took four nonlinear oscillators and by using Python 
program plotted the phase space, time series and Poincare sections of all these oscillators which clearly 
explained the chaotic behaviour of the oscillators at some critical values. Then we gave a brief 
discussion about fractals which exhibits interesting features like self-similarity, but have only pictorial 
origin and usually mathematical explanations are difficult. By using Fractalyse software we computed 
the fractal dimension of the four nonlinear oscillators when they are chaotic.  All of them have good 
fractal dimension values. So they are fractals. Thus we established that chaotic systems are fractals. 
Through this article we had given a simple method to show that all chaotic systems are fractals, even 
though the pictorial representation of chaotic systems does not match with the popular fractals 
available in nature. 
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