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Abstract: During the development of physics, we can see that the Equipartition theorem(EPT) 
has been redefined many times. In this paper, we start with the description of the historical 
development of the theorem along with the various definitions given by different scientists. 
Then we found the expressions for classical, quantum and discrete energysystems and 
redefined EPT. 
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Introduction 

In his paper On the physics of media that are composed of free and elastic molecules in a state 
of motion, submitted to the Royal Society in 1845, but not published until 1892, Waterston states that 
"In mixed media, the mean square velocity is inversely proportional to the specific weight of the 
molecules"(Waterston, 1892). In this paper Waterston put forwarded three postulates, (a) Heat is some 
kind of motion of the smallest parts of bodies (b) The molecules move so rapidly and in so many 
directions, with frequent "fortuitous encounters", that one can compute the properties of the system 
at any time by simply averaging over all the possible molecular states and (c) In a mixture of elastic 
particles of different masses in thermal equilibrium, each kind of particle will have the same average 
kinetic energy. 

 In 1857, Rudolf Clausius independently stated the same idea put forth by Waterston in a more 
convincing, comprehensive and authoritative manner receiving greater attention (Clausius, 1859). The 
next step in the development of EPT came in 1859 by James Clark Maxwell who in his paper titled 
“Illustrations of the Dynamical Theory of Gases" argued that the kinetic heat energy of a gas is equally 
divided between linear and rotational energy (Maxwell, 1860). In the paper he summarizes that, "A 
discussion of collisions between perfectly elastic bodies of any form leads to the conclusion that final 
equilibrium state of any number of systems of moving particles of any form is that in which the average 
kinetic energy of translation along each of the three axes is the same in all the systems and equal to 
the average kinetic energy of rotation about each of the three principle axes of each particle". In 1876, 
Ludwig Boltzmann expanded Maxwell’s principle by showing that the average energy was divided 
equally among all the independent components of motion in a system (Cercignani & Penrose, 2006). 
Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong-Petit 
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law for the specific heat capacities of solids. Boltzmann argued that the specific heat of a system can 

be rationalized on the basis of 
1

2
𝑘𝑇of energy per degree of freedom of molecular motion, where k is a 

suitable constant and T is the temperature. 
Though studies by Dulong and Petit(Fox, 1968) showed that the specific heat capacities of solid 

elements at room temperature were inversely proportional to the atomic weight of the element, 
further investigations by James Dewar and Heinrich Friedrich Weber in 1872 showed that this Dulong-
Petit law holds only at high temperatures. Lord Kelvin, in his Baltimore lectures (Thomson, Baron Kelvin, 
2010) suggested that the derivation of the equipartition theorem must be incorrect considering its 
failure to account for the experimental results. The important idea regarding EPT was provided by 
Einstein(Einstein, 1907) by showing that the anomalies in the specific heat were due to the quantum 
effects. Einstein's theory was supported by W H Nernst’s measurements of specific heats at low 
temperatures in 1910, and resulted in the acceptance of quantum theory (Barkan, 1991). 

In his book(Reif, 2009) F. Reif define EPT as "If a system described by classical statistical 
mechanics is in equilibrium at the absolute temperature T, every independent quadratic term in its 

energy has a mean value equal to
1

2
𝑘𝑇”.In “Thermodynamics and Statistical Mechanics” by Greiner, 

Neise and Stocker, the definition of the same is given as "For each degree of freedom of the system at 

a temperature T has the mean thermal kinetic energy
1

2
𝑘𝑇“. The above two definitions represent the 

equipartition theorem (equal distribution theorem), which says that the thermal energy is uniformly 
distributed over all degrees of freedom of the system(Greiner, Neise, & Stöcker, 2001).  

The remarkable proof furnished by L. E. Turner for the non-quadratic terms found its validity only 
for one homogeneous degree of freedom or for a single canonical variable (Turner Jr, 1976). R.C. Tolman 
developed a general expression for the EPT which is applicable to non-quadratic Hamiltonian as well 
(Tolman, 1979). The definitions provided in textbooks does not clearly say for which type of systems 
this theorem is valid and the definitions give the impression that it is valid for all systems(Beale & 
Pathria, 2011; Huang, 2009). So we provide alternate statements based on the study of some statistical 
systems, which is given in the coming sections. 

Method 

For systems, energy can be of the different forms, discrete like ϵ, 2ϵ,...,quantum like 

(𝑛1 +
1

2
) ℏ𝜔,

𝑛2ℎ2

8𝑚𝐿2  or continuous like 
𝑝2

2𝑚
 , pc, 

𝑝2

2𝑚
   

1

2
𝐾𝑞2  where 𝜔  is the angular frequency, n is the 

quantum number, ℏ is the reduced Planck constant, m is the mass of a constituent particle, L is the size 
of the container, p is the momentum, c is the velocity of light, q is the displacement and K is the spring 
constant. The properties of the systems with different types of energies will be different. By obtaining 
the average energy of different types of systems we arrive at a generalized equation for equipartition 
in different regime of physics such as in classical and quantum world. 

Results and Discussion 

Average energy for classical systems 

Let us find average energy for a continuous energy system or a classical ideal gas system where 

we have energy ϵ = 
𝑝2

2𝑚
. For an ideal gas we know partition function is 𝑄 =

𝑉

𝜆3 (Beale & Pathria, 2011) 

where λ =
ℎ

(2𝜋𝑚𝑘𝑇)
1
2

is the de Broglie thermal wavelength and V is the volume. So QN is (
𝐿

𝜆
)

𝑁
, (

𝐴

𝜆2)
𝑁
 and 

(
𝐿

𝜆3)
𝑁
for one, two and three dimensions respectively. On solving we get ⟨𝐸⟩ =

3

2
𝑁𝑘𝑇in 3 dimensions, 

𝑁𝑘𝑇 for two dimensions and 
1

2
𝑁𝑘𝑇 for one dimension. This is an interesting result. Here the average 

is only a function of temperature. Repeating for continuous systems like mass less relativistic gas (E = 

pc) and harmonic oscillator 
𝑝2

2𝑚
  

1

2
𝐾𝑞2 we get the average energy as 3NkT in both cases. Here also total 
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energy is equally shared among each dimension. For the mechanical energy you can never guarantee 

it. In 3D, the systems with continuous energy, 
𝑝2

2𝑚
will have their average energy as(Beale & Pathria, 2011) 

⟨𝐸⟩ =
3

2
𝑁𝑘𝑇 =

1

2
𝑁𝑘𝑇  

1

2
𝑁𝑘𝑇   

1

2
𝑁𝑘𝑇       (1) 

Now let us apply the results to any type of mechanical energy. 

Expressing EPT as an equation for classical energy systems 

Tolman gave an expression for the EPT for N particle system(Tolman, 1979). Consider a particle 

with only kinetic energy 
𝑝2

2𝑚
. Then (Beale & Pathria, 2011) 

𝑄 = ∫
𝑑𝑝1𝐿

ℎ
𝑒−𝛽𝐸(𝑝1)∞

−∞
          (2) 

𝑑[𝑝1𝑒−𝛽𝐸] = [𝑑𝑝1𝑒−𝛽𝐸] + [𝑝1𝑒−𝛽𝐸 × −𝛽
𝜕𝐸

𝜕𝑝1
𝑑𝑝1] 

𝑑𝑝1𝑒−𝛽𝐸 = 𝑑[𝑝1𝑒−𝛽𝐸] + 𝛽𝑝1

𝜕𝐸

𝜕𝑝1
𝑒−𝛽𝐸𝑑𝑝1 

Substituting in the equation for Q and solving we get  

𝑄 = ∫
𝐶

𝑘𝑇
[𝑝1

𝜕𝐸

𝜕𝑝1
] 𝑒−𝛽𝐸𝑑𝑝1

∞

−∞
         (3) 

where 
𝐿

ℎ
= 𝐶. Rearranging  

𝑘𝑇 =
∫ 𝐶 [𝑝1

𝜕𝐸
𝜕𝑝1

] 𝑒−𝛽𝐸𝑑𝑝1
∞

−∞

𝑄
 

𝑘𝑇 = ⟨𝑝1
𝜕𝐸

𝜕𝑝1
⟩           (4) 

For 2 particles with momenta𝑝1 and 𝑝2we get 

(𝑘𝑇)2 = ⟨(𝑝1
𝜕𝐸

𝜕𝑝1
) (𝑝2

𝜕𝐸

𝜕𝑝2
)⟩         (5) 

and for a harmonic oscillator with energy E = 
𝑝2

2𝑚
  

1

2
𝐾𝑞1

2 we get 

(𝑘𝑇)2 = ⟨(𝑝1
𝜕𝐸

𝜕𝑝1
) (𝑞1

𝜕𝐸

𝜕𝑞1
)⟩         (6) 

In general the Tolman equation for EPT is⟨𝑞
𝜕𝐸

𝜕𝑞
⟩ = 𝑘𝑇or ⟨𝑝

𝜕𝐸

𝜕𝑝
⟩ = 𝑘𝑇. 

Substituting the energies we will get a general expression for EPT as 

⟨𝐸⟩ =
𝑑𝑁𝑘𝑇

𝑛
           (7) 

where n is the power of energy function and d is the dimension. In the next section we give an 
alternate proof using statistical mechanics. 

Derivation of the general expression of EPT for classical systems 

Volume of a ‘d’ dimensional hyper sphere is given by (Beale & Pathria, 2011) 

𝑉𝑑 =
𝜋

𝑑
2𝑅𝑑

𝑑

2
!
                 (8)                    

Differentiating 

𝑑𝑉𝑑 =
𝜋

𝑑
2𝑑𝑅𝑑−1𝑑𝑅

𝑑

2
!

                  (9) 

For a momentum space,   
 R = p                                 (10)                       
Then 

𝑑𝑉𝑑 =
𝜋

𝑑
2𝑑𝑝𝑑−1𝑑𝑝

𝑑

2
!

           (11)               
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Let the general expression for energy be 𝐸 = 𝑎𝑝𝑛, where a is a constant and n is the exponent 
of momentum (The same procedure can be used for the position variable as well). Now the single 
particle canonical partition function 𝑄1is given by (Beale & Pathria, 2011; Huang, 2009) 

𝑄1 = ∫ 𝑔(𝑝)𝑑𝑝𝑒−𝛽𝐸∞

0
          (12) 

Substituting, the number of states between p and p   dp 

𝑄1 = ∫
𝜋

𝑑
2𝑑𝑝𝑑−1𝑉𝑑𝑝

𝑑

2
!ℎ3

𝑒−𝛽𝑎𝑝𝑛∞

0
        (13)               

where V is the d-dimensional spatial volume 

𝑄1 =
𝜋

𝑑
2𝑑𝑉

𝑑

2
!ℎ𝑑

∫ 𝑝𝑑−1𝑒−𝛽𝑎𝑝𝑛
𝑑𝑝

∞

0
         (14) 

Let  𝑝𝑛=x ,then on substitution, 

𝑄1 =
𝜋

𝑑
2𝑑𝑉

𝑛
𝑑

2
!ℎ𝑑

∫ 𝑥
𝑑−𝑛

𝑛 𝑒−𝛽𝑎𝑥𝑑𝑥
∞

0
        (15) 

Integrating, 

𝑄1 =
𝜋

𝑑
2𝑑𝑉

𝑛
𝑑

2
!ℎ𝑑

(
𝑑

𝑛
− 1) ! (𝑎𝛽)

−𝑑

𝑛         (16) 

and N particle partition function is𝑄𝑁 =
1

𝑁!
𝑄1

𝑁 

⟨𝐸⟩ = − (
𝜕𝑙𝑛𝑄𝑁

𝜕𝛽
)

𝑉,𝑁
= 𝑘𝑇2 (

𝜕𝑙𝑛𝑄𝑁

𝜕𝑇
)

𝑉,𝑁
       (17) 

On substitution, we get 

⟨𝐸⟩ =
𝑑𝑁𝑘𝑇

𝑛
          (18) 

In the next two sections we will find average energy for discrete and quantum energy systems 
which will show that equal division or partition principle is applicable for all these energies also. 

Average energy for discrete and quantum systems 

Consider a system which has two levels with energies 𝐸1 = 0 and 𝐸1 =ε. 
Then single particle partition function(PF) is  

𝑄1 = [1 + 𝑒−𝛽𝜀] 

N particle PF in one dimension is 

𝑄𝑁 = [𝑄1]𝑁 = [1 + 𝑒−𝛽𝜀]
𝑁

 

Using the expression for average energy 

⟨𝐸⟩ = − (
𝜕𝑙𝑛𝑄

𝜕𝛽
)

𝑇,𝑉

 

Substituting we get  

⟨𝐸⟩ =
𝑁𝜀

(𝑒𝛽𝜀 + 1)
 

For 2 and 3 dimensions average energy will be
2𝑁𝜀

(𝑒𝛽𝜀+1)
 and 

3𝑁𝜀

(𝑒𝛽𝜀+1)
 respectively. We can see that 

energy is equally partitioned in 3 dimensions. Here average energy is a function of the basic unit of 
energy and temperature T. Next let us find the average energy for a quantized system. 

Quantum energy system 

All Consider a quantum harmonic oscillator without zero-point energy with energy  

𝐸𝑛 = 𝑛ℏ𝜔  where n = 0, 1, 2.... 

Let  ϵ = ℏ𝜔, then 𝐸𝑛 =0,ϵ, 2 ϵ…….,∞ 

𝑄1 = ∑ 𝑒−𝛽𝑛ℏ𝜔 =
1

1−𝑒−𝛽ℏ𝜔
∞
0 (19)                                                     
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 For N particles in one dimension 

𝑄𝑁 = (
1

1 − 𝑒−𝛽ℏ𝜔
)

𝑁

 

Substituting PF in the expression for average energy we get 

⟨𝐸⟩ =
𝑁ℏ𝜔

(𝑒𝛽ℏ𝜔−1)
   (20) 

Extending to the two and three dimensions 

⟨𝐸⟩ =
2𝑁ℏ𝜔

(𝑒𝛽ℏ𝜔−1)
 (21) 

⟨𝐸⟩ =
3𝑁ℏ𝜔

(𝑒𝛽ℏ𝜔−1)
 (22) 

For 2 and 3 dimensions respectively. Here also energies are equally divided among the 3 
dimensions and are functions of basic unit of energy and absolute temperature. 

So defining EPT as equally distributed 
𝑘𝑇

2
  for quadratic energies is insufficient and hence we 

propose to redefine EPT as Equal partitioning of average energy is applicable for all types of energies, 
but for systems with classical energies, the average energy, which will be only temperature dependent, 

is equally distributed in each dimension such that each component is given by 
𝑘𝑇

𝑛
  where n is the 

exponent of the position or momentum term in the classical energy. 

Conclusion 

Equipartition theorem had been restated many times in the history of physics because a 
complete understanding of this fundamental concept was lacking in earlier years. We obtained the 
average energy for classical, quantum and discrete energy systems and showed that energy is equally 
partitioned in 3 dimensions for all these systems. But for quantum and discrete systems energy is not 
only temperature dependent. Now that statistical mechanics has developed much more, a revised 
definition is required, which we have done in this paper. 
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