Modelling instruction effect with different reasoning ability on physics conceptual understanding by controlling the prior knowledge
Abstract
Modelling instruction is systematic instructional activity for constructing and applying scientific knowledge in Physics lesson. The purpose of this research is to determine the effect of Modelling instruction with different reasoning abilities on understanding physical concepts by controlling students’ prior knowledge. This research used experimental method with 2x2 factorial design with two Modelling instruction classes and two conventional classes with a total of 176 students. The instrument used was reasoning ability test, prior knowledge test, and physics concept test. It used LCTSR (Lawson’s Classroom Test of Scientific Reasoning) instrument. Prior knowledge test instruments consisted of 25 problems to identify how deep the students understand the topic before they undergo the learning process and physics concept test consisted of 25 problems. Based on the statistical test using two factor Ancova, it proved that there was a significant difference in students’ ability to master the physics concept between using Modelling instruction learning model and using conventional learning model. The result showed that the Modelling instruction increasing conceptual understanding better than conventional learning. There are two important parts in the Modelling instruction that are model development and model deployment. This study also confirms that there are significant differences in understanding the concepts between students of high reasoning ability and low reasoning ability. Students with high reasoning abilities have a better understanding of concepts than students with low reasoning abilities.
References
Adey, P., & Shayer, M. (1994). Really raising standards–improving learning through cognitive intervention. Routledge.
Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 2. https://doi.org/10.1186/s43031-019-0007-8
Bao, L., Xiao, Y., Koenig, K., & Han, J. (2018). Validity evaluation of the Lawson classroom test of scientific reasoning. Physical Review Physics Education Research, 14(2), 020106. https://doi.org/10.1103/PhysRevPhysEducRes.14.020106
Brewe, E., Bartley, J. E., Riedel, M. C., Sawtelle, V., Salo, T., Boeving, E. R., Bravo, E. I., Odean, R., Nazareth, A., Bottenhorn, K. L., Laird, R. W., Sutherland, M. T., Pruden, S. M., & Laird, A. R. (2018). Toward a neurobiological basis for understanding learning in university modeling instruction physics courses. Frontiers in ICT, 5(MAY), 1–13. https://doi.org/10.3389/fict.2018.00010
Brewe, E., Kramer, L., & O’Brien, G. (2009). Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS. Physical Review Special Topics - Physics Education Research, 5(1), 013102. https://doi.org/10.1103/PhysRevSTPER.5.013102
Brewe, E., & Sawtelle, V. (2018). Modelling instruction for university physics: Examining the theory in practice. European Journal of Physics, 39(5). https://doi.org/10.1088/1361-6404/aac236
Coletta, V. P., & Phillips, J. A. (2005). Interpreting FCI scores: Normalized gain, preinstruction scores, and scientific reasoning ability. American Journal of Physics, 73(12), 1172–1182. https://doi.org/10.1119/1.2117109
Coletta, V. P., Phillips, J. A., Savinainen, A., & Steinert, J. J. (2008). Comment on ‘The effects of students’’ reasoning abilities on conceptual understanding and problem-solving skills in introductory mechanics’.’ European Journal of Physics, 29(5), L25–L27. https://doi.org/10.1088/0143-0807/29/5/L01
Coletta, V. P., Phillips, J. A., & Steinert, J. J. (2007). Why you should measure your students’ reasoning ability. The Physics Teacher, 45(4), 235–238. https://doi.org/10.1119/1.2715422
Coletta, V. P., Phillips, J. A., Steinert, J., Rebello, N. S., Engelhardt, P. V., & Singh, C. (2012). FCI normalized gain, scientific reasoning ability, thinking in physics, and gender effects. AIP Conference Proceedings, 23–26. https://doi.org/10.1063/1.3679984
Coletta, V. P., & Steinert, J. J. (2020). Why normalized gain should continue to be used in analyzing preinstruction and postinstruction scores on concept inventories. Physical Review Physics Education Research, 16(1), 010108. https://doi.org/10.1103/PhysRevPhysEducRes.16.010108
Ding, L. (2014). Verification of causal influences of reasoning skills and epistemology on physics conceptual learning. Physical Review Special Topics - Physics Education Research, 10(2), 023101. https://doi.org/10.1103/PhysRevSTPER.10.023101
Ding, L. (2018). Progression trend of scientific reasoning from elementary school to university: A large-scale cross-grade survey among Chinese students. International Journal of Science and Mathematics Education, 16(8), 1479–1498. https://doi.org/10.1007/s10763-017-9844-0
Ding, L., Reay, N., Lee, A., & Bao, L. (2011). Exploring the role of conceptual scaffolding in solving synthesis problems. Physical Review Special Topics - Physics Education Research, 7(2), 020109. https://doi.org/10.1103/PhysRevSTPER.7.020109
Ding, L., Wei, X., & Mollohan, K. (2016). Does higher education improve student scientific reasoning skills? International Journal of Science and Mathematics Education, 14(4), 619–634. https://doi.org/10.1007/s10763-014-9597-y
Dounas-Frazer, D. R., & Lewandowski, H. J. (2018). The modelling framework for experimental physics: description, development, and applications. European Journal of Physics, 39(6), 64005. https://doi.org/10.1088/1361-6404/aae3ce
Dye, J., Cheatham, T., Rowell, G. H., Barlow, A., & Carlton, R. (2013). The impact of modeling instruction within the inverted curriculum. Electronic Journal of Science Education, 17(2), 1–19. http://ejse.southwestern.edu/article/view/11231
Erlina, N., Susantini, E., & Wasis. (2018). Common false of student’s scientific reasoning in physics problems. Journal of Physics: Conference Series, 1108(1), 012016. https://doi.org/10.1088/1742-6596/1108/1/012016
Fernandez, F. B. (2017). Action research in the physics classroom: the impact of authentic, inquiry based learning or instruction on the learning of thermal physics. Asia-Pacific Science Education, 3(1), 3. https://doi.org/10.1186/s41029-017-0014-z
Firman, M. A., Ertikanto, C., & Abdurrahman, A. (2019). Description of meta-analysis of inquiry-based learning of science in improving students’ inquiry skills. Journal of Physics: Conference Series, 1157, 022018. https://doi.org/10.1088/1742-6596/1157/2/022018
Frosch, C., & Simms, V. (2015). Understanding the role of reasoning ability in mathematical achievement. EuroAsianPacific Joint Conference on Cognitive Science. https://doi.org/10.13140/RG.2.1.1107.2727
Furwati, S., & Zubaidah, S. (2017). Conceptual understanding and representation quality on Newton’s Laws through multi-representation learning. Jurnal Pendidikan Sains, 5(3), 80–88. http://journal.um.ac.id/index.php/jps/article/view/9035
Gunawan, G., Nisrina, N., Y Suranti, N. M., Herayanti, L., & Rahmatiah, R. (2018). Virtual laboratory to improve students’ conceptual understanding in physics learning. Journal of Physics: Conference Series, 1108(1), 012049. https://doi.org/10.1088/1742-6596/1108/1/012049
Halloun, I. A., & Hestenes, D. (1987). Modeling instruction in mechanics. American Journal of Physics, 55(5), 455–462. https://doi.org/10.1119/1.15130
Hayes, J. C., & Kraemer, D. J. M. (2017). Grounded understanding of abstract concepts: The case of STEM learning. Cognitive Research: Principles and Implications, 2(1), 7. https://doi.org/10.1186/s41235-016-0046-z
Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440–454. https://doi.org/10.1119/1.15129
Hestenes, D. (2015). Conceptual Modeling in physics, mathematics and cognitive science. Semiotix Streaming Edition: A Global Information Bulletin.
Hulwani, A., Susilawati, S., & Kosim, K. (2019). Pengaruh model perolehan konsep dengan metode demonstrasi terhadap penguasaan konsep fisika siswa SMA. Jurnal Pendidikan Fisika Dan Teknologi, 5(2), 319. https://doi.org/10.29303/jpft.v5i2.1377
Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 10–17.
Kusairi, S., Imtinan, S., & Swasono, P. (2019). Increasing students’ understanding in the concept of projectile motion with modelling instruction accompanied by embedded formative e-assessment. Journal of Physics: Conference Series, 1387(1), 012081. https://doi.org/10.1088/1742-6596/1387/1/012081
Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry? Journal of Research in Science Teaching, 42(6), 716–740. https://doi.org/10.1002/tea.20067
Lawson, A. E., Banks, D. L., & Logvin, M. (2007). Self-efficacy, reasoning ability, and achievement in college biology. Journal of Research in Science Teaching, 44(5), 706–724. https://doi.org/10.1002/tea.20172
Lawson, T. J., Schwiers, M., Doellman, M., Grady, G., & Kelnhofer, R. (2003). Enhancing students’ ability to use statistical reasoning with everyday problems. Teaching of Psychology, 30(2), 107–110. https://doi.org/10.1207/S15328023TOP3002_04
Lucas, L. L., & Lewis, E. B. (2019). High school students’ use of representations in physics problem solving. School Science and Mathematics, 119(6), 327–339. https://doi.org/10.1111/ssm.12357
Malone, K. L. (2008). Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Physical Review Special Topics - Physics Education Research, 4(2), 020107. https://doi.org/10.1103/PhysRevSTPER.4.020107
McPadden, D., & Brewe, E. (2017). Impact of the second semester University Modeling Instruction course on students’ representation choices. Physical Review Physics Education Research, 13(2), 020129. https://doi.org/10.1103/PhysRevPhysEducRes.13.020129
Meltzer, D. E. (2002). The relationship between mathematics preparation and conceptual learning gains in physics: A possible “‘hidden variable’†in diagnostic pretest scores. American Journal of Physics, 70(12), 1259–1268. https://doi.org/10.1119/1.1514215Ãâ€
Nisa, E. K., Jatmiko, B., & Koestiari, T. (2018). Development of guided inquiry-based physics teaching materials to increase critical thinking skills of highschool students. Jurnal Pendidikan Fisika Indonesia, 14(1), 18–25. https://doi.org/10.15294/jpfi.v14i1.9549
Putri, S. B., Sarwi, S., & Akhlis, I. (2018). Pembelajaran inkuiri terbimbing melalui kegiatan lab virtual dan eksperimen riil untuk peningkatan penguasaan konsep dan pengembangan aktivitas siswa. Unnes Physics Education Journal, 7(1), 14–22. https://doi.org/10.15294/upej.v7i1.22477
Riyadi, A. S., & Mosik, M. (2014). Penerapan metode pembelajaran kooperatif tipe NHT untuk meningkatkan pemahaman konsep dan komunikasi ilmiah. UPEJ Unnes Physics Education Journal, 3(2). https://doi.org/10.15294/upej.v3i2.3590
Silaban, S. S., & Utari, S. (2015). Analisis didaktik berdasarkan profil penguasaan konsep siswa pada materi suhu dan kalor. Prosiding Simposium Nasional Inovasi Dan Pembelajaran Sains 2015 (SNIPS 2015).
Simanjuntak, M. P. (2012). Peningkatan pemahaman konsep fisika mahasiswa melalui pendekatan pembelajaran pemecahan masalah berbasis video. Jurnal Pendidikan Fisika, 1(2), 55–60. https://doi.org/10.22611/jpf.v1i2.3187
Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: the influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812–1831. https://doi.org/10.1080/09500693.2018.1504346
Sujarwanto, E., Hidayat, A., & Wartono, W. (2014). Kemampuan pemecahan masalah fisika pada modeling instruction pada siswa SMA kelas XI. Jurnal Pendidikan IPA Indonesia, 3(1), 65–78. https://doi.org/10.15294/jpii.v3i1.2903
Weber, J., & Wilhelm, T. (2020). The benefit of computational modelling in physics teaching: a historical overview. European Journal of Physics, 41(3), 034003. https://doi.org/10.1088/1361-6404/ab7a7f
Yolanda, D. T., Lubis, P., & Sugiarti, S. (2020). Pengaruh model pembelajaran contextual teaching and learning (CTL) berbantuan alat peraga terhadap pemahaman konsep fisika siswa SMA. Jurnal Luminous: Riset Ilmiah Pendidikan Fisika, 1(1), 27. https://doi.org/10.31851/luminous.v1i1.3444
Zimmerman, C., Olsho, A., Brahmia, S. W., Loverude, M. E., Boudreaux, A., & Smith, T. I. (2020, January 13). Toward understanding and characterizing expert physics covariational reasoning. 2019 Physics Education Research Conference Proceedings. https://doi.org/10.1119/perc.2019.pr.Zimmerman
Zimmerman, C., Olsho, A., Loverude, M. E., & Brahmia, S. W. (2020). Identifying covariational reasoning behaviors in expert physicistsin graphing tasks. Research in Undergraduate Mathematics Education Conference Procedings 2020. https://arxiv.org/abs/1911.02044
Authors
Momentum: Physisc Education Journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles and allow readers to use them for any other lawful purpose.
This work is licensed under a Creative Commons Attribution 4.0 International License. The Authors submitting a manuscript do so with the understanding that if accepted for publication, copyright of the article shall be assigned to Momentum: Physics Education Journal