Digitizing Paddy Harvest Productivity Based on K-Means Clustering
DOI:
https://doi.org/10.21067/smartics.v7i1.5270Keywords:
Clusterin, K-Means, Paddy, ClusterAbstract
Paddy as an ingredient of staple food by people in Indonesia includes in East Java Province. Therefore attention to the production of paddy in East Java is necessary, and this attention will give a piece of knowledge about which region produces paddy optimally or less optimal. This study aim is to do a clustering about paddy production in each region in East Java. K-Means algorithm uses to do clustering. The result is 3 clusters obtained, high, medium, and less productivity cluster. There are six regions in high productivity cluster, 20 regions in medium productivity cluster, and 12 regions in less productivity cluster.
References
“FAOSTAT,†2019. http://www.fao.org/faostat/en/#data/QC/visualize (accessed Jan. 12, 2021).
“BPS Provinsi Jawa Timur,†2019. https://jatim.bps.go.id/statictable/2019/10/08/1583/luas-panen-produksi-dan-produktivitas-padi-di-provinsi-jawa-timur-menurut-kabupaten-kota-ha-2018.html (accessed Jan. 12, 2021).
J. G. Soumen Chakrabarti, Martin Ester, Usama Fayyad and W. W. Jiawei Han, Shinichi Morishita, Gregory Piatetsky-Shapiro, “Data Mining Curriculum: A Proposal (Version 1.0),†vol. 1, 2006, Accessed: Jan. 12, 2021. [Online]. Available: https://www.kdd.org/curriculum/index.html.
J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques, 3rd ed. Waltham: Morgan kaufman Publisher, 2012.
M. N. Reza, I. S. Na, S. W. Baek, and K. H. Lee, “Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images,†Biosyst. Eng., vol. 177, no. 2018, pp. 109–121, 2019, doi: 10.1016/j.biosystemseng.2018.09.014.
Liyantono, Y. Almadani, Y. Adillah, M. Maulana Yusuf, M. N. Reza Mahbub, and A. Fatikhunnada, “Analysis of Paddy Productivity Using NDVI and K-means Clustering in Cibarusah Jaya, Bekasi Regency,†IOP Conf. Ser. Mater. Sci. Eng., vol. 557, no. 1, 2019, doi: 10.1088/1757-899X/557/1/012085.
Winarni, “Penerapan Metode Clustering Fuzzy C-Means Menggunakan Matlab Untuk Memetakan Potensi Tanaman Padi Di Kabupaten Bekasi,†J. Sist. Inf. Manaj. Basis Data, vol. 01, no. 02, pp. 116–127, 2018.
B. R. JURISTRA, “Pemetaan Hasil Clustering Produktifitas Padi dan Palawija di Pulau Jawa Menggunakan Algoritma K-Means,†Solo, 2017. [Online]. Available: https://eprints.uns.ac.id/id/eprint/33524.
H. Yuwafi, F. Marisa, and I. D. Wijaya, “Implementasi Data Mining Untuk Menentukan Santri Berprestasi Di Pp . Manaarulhuda Dengan Metode,†J. SPIRIT, vol. 11, no. 1, pp. 22–29, 2019.
A. Aquino, B. Millan, M. P. Diago, and J. Tardaguila, “Automated early yield prediction in vineyards from on-the-go image acquisition,†Comput. Electron. Agric., vol. 144, no. March 2017, pp. 26–36, 2018, doi: 10.1016/j.compag.2017.11.026.
N. P. Dharshinni, F. Azmi, I. Fawwaz, A. M. Husein, and S. D. Siregar, “Analysis of Accuracy K-Means and Apriori Algorithms for Patient Data Clusters,†J. Phys. Conf. Ser., vol. 1230, no. 1, 2019, doi: 10.1088/1742-6596/1230/1/012020.
A. Jamal, A. Handayani, A. A. Septiandri, E. Ripmiatin, and Y. Effendi, “Dimensionality Reduction using PCA and K-Means Clustering for Breast Cancer Prediction,†Lontar Komput. J. Ilm. Teknol. Inf., vol. 9, no. 3, p. 192, 2018, doi: 10.24843/lkjiti.2018.v09.i03.p08.
R. Risnawati and Rohminatin, “K-Means Clustering HWI Products (Case Study: HWI Kisaran Distributor),†vol. 4509, pp. 1–7, 2020.
D. Ardiada, P. A. Ariawan, and M. Sudarma, “Evaluation of Supporting Work Quality Using K-Means Algorithm,†IJEET Int. J. Eng. Emerg. Technol., vol. 3, no. 1, pp. 3–6, 2018.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.