Cara siswa menyelesaikan masalah suhu dan kalor dari sudut pandang keterampilan metakognisi

Main Article Content

Susanti Rahayu


Abstract: The ways students solve problems become one of the main target of physics learning. Investigation about how students solve problems is explored in the context of metacognition skills.  The steps of metacognition skills in physics problem solving include: planning, monitoring, evaluation, and controlling. This is a preliminary exploration study that aims to: 1.) mapping the metacognition skills that are used in physics problem solving of temperature and heat, 2.)  exhibiting students’ self evaluation of his/her metacognition skills in problem solving, and 3.) identifying the relationship between students answer and their self evaluation. This is a descriptive qualitative study. The data were obtained by test and questionnaire. The physics problem solving test was given to 35 students of 11th grader. After doing test, they filled the 22 items of questionnaire adapted from Physics Metacognition Inventory (PMI). The result shows that none of the students solved all the problems optimally. The result of questionnaire showed that the average of metacognitive skills 64%, with the maximum and the minimum scores is 87% and 35% respectively. The correlation between the analyses of students’ answer and their self evaluation shows a negative value that indicates no relationship. Specifically, students pass the planning and controlling phase quite well, even though they tend to be poor in monitoring and evaluation. This findings must become a particular attention for the researchers and teachers in providing the learning strategy to habit the phases of metacognition skills in order to improve students’ metacognitive skills.
Abstrak: Cara siswa dalam menyelesaikan masalah menjadi salah satu sasaran utama dalam pembelajaran fisika. Penelusuran mengenai bagaimana cara siswa menyelesaikan masalah dieksplorasi dalam konteks keterampilan metakognisi. Tahapan keterampilan metakognisi dalam menyelesaikan masalah fisika meliputi: planning, monitoring, evaluation, dan controlling. Penelitian ini merupakan studi eksplorasi awal bertujuan untuk: 1.) memetakan keterampilan metakognisi yang digunakan siswa dalam menyelesaikan masalah fisika pada materi Suhu dan Kalor, 2.) menunjukkan penilaian diri siswa terhadap keterampilan metakognisi yang dimiliki dalam menyelesaikan masalah, dan 3.) mengidentifikasi hubungan antara analisis jawaban siswa dan penilaian diri. Penelitian ini merupakan penelitian deskriptif kualitatif. Data penelitian diperoleh melalui tes dan angket. Tes yang digunakan merupakan soal problem solving, yang diberikan kepada 35 siswa kelas XI. Setelah mengerjakan soal, siswa mengisi angket yang terdiri dari 22 item yang diadaptasi dari Physics Metacognition Inventory (PMI). Hasil penelitian menunjukkan belum ada siswa yang optimal menyelesaikan seluruh soal. Angket penilaian diri menunjukkan skor rerata 64%, dengan skor maksimum dan minimum masing-masing 87% dan 35%. Hubungan antara analisis jawaban siswa dan hasil penilaian diri menunjukkan nilai korelasi negatif yang mengindikasikan tidak sinkronnya hasil jawaban dan penilaian diri siswa. Secara spesifik, tahapan planning dan controlling dilakukan siswa dengan cukup baik, akan tetapi siswa cenderung lemah dalam memonitoring dan mengevaluasi ketika menyelesaikan masalah. Temuan ini menjadikan perhatian khusus untuk peneliti dan guru dalam menyajikan strategi belajar untuk membiasakan tahapan dalam keterampilan metakognisi dengan target peningkatan keterampilan metakognisi siswa.

Warning: Invalid argument supplied for foreach() in /data/www/ on line 642


Download data is not yet available.

Article Details

How to Cite
Rahayu, S. (2018). Cara siswa menyelesaikan masalah suhu dan kalor dari sudut pandang keterampilan metakognisi. Momentum: Physics Education Journal, 2(2).
Author Biography

Susanti Rahayu, Universitas Negeri Malang

Postgraduate, Physics Education Departement, Universitas Negeri Malang


Abdullah, H., Malago, J. D., Bundu, P., & Thalib, S. B. (2013). The use of metacognitive knowledge patterns to compose physics higher order thinking problems. Asia-Pacific Forum on Science Learning and Teaching, 14(2), 1–12.

Akturk, A. O., & Sahin, I. (2011). Literature review on metacognition and its measurement. Procedia - Social and Behavioral Sciences, 15, 3731–3736.

Anandaraj, S. & Ramesh, C. (2014). A Study on the Relationship Between Metacognition and Problem Solving Ability of Physics Major Students. Indian Journal of Applied Research, 4(5), 191–199.

Bannert, M., & Mengelkamp, C. (2008). Assessment of metacognitive skills by means of instruction to think aloud and reflect when prompted . Does the verbalisation method affect learning ?, 3, 39–58.

Devetak, I., Glažar, S. A., & Vogrinc, J. (2010). The Role of Qualitative Research in Science The Role of Qualitative Research. Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 77–84.

Flavell, J. H. (1979). Metacognition and Cognitive Monitoring A New Area of Cognitive — Developmental Inquiry. American Psychologist, 34(10), 906–911.

Harandi, V., Eslami, S. H., Ahmadi D. M., & Darehkordi, A. (2013). The Effect of Metacognitive Strategy Training on Social Skills and Problem - Solving Performance. Journal of Psychology & Psychotherapy, 3(4), 1–4.

Maliki, I. M. (2017). Kemampuan Pemecahan Masalah dan Penguasaan Konsep Peserta Didik SMA pada TopikSuhu da Kalor Melalui Strategi Pembelajaran Cognitive Apprenticeship. (Unpublished master’s thesis).Malang. Pascasarjana Universitas Negeri Malang

Mansour, N. (2016). Learning and Teaching in the Knowledge Society: Challenges and Potentials. Paper
presented at: International Conference on Education by theme Education in the 21 th Century:
Responding to Current Issues. Universitas Negeri Malang, 22-24 November 2016. Malang: Indonesia

McCord, R. E. (2014). Thinking About Thinking in Syudy Group: Sudying Engineering Students’ Use of
Metacognition in Naturalistic Settings. (Unpublished doctor’s dissertation). Blacksburg. Virginia
Polytechnic Institute and State University.

Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for Intermediate Statistics: Use and Interpretation.
Mahwah, New Jersey: Lawrence Erlbaum Associates.

Ozturk, N. (2017). Assessing Metacognition : Theory and Practices. International Journal Assessment in Education, 4(2), 134–148.

Schellings, G. L. M., Van Hout-Wolters, B. H. A. M., Veenman, M. V. J., & Meijer, J. (2013). Assessing metacognitive activities: The in-depth comparison of a task-specific questionnaire with think-aloud protocols. European Journal of Psychology of Education, 28(3), 963–990.

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting Self-Regulation in Science Education: Metacognition as Part of a Broader Perspective on Learning Gregory Schraw, Kent J. Crippen and Kendall Hartley University of Nevada. Research in Science Education, 2006(36), 111–139.

Shareeja, Ali. M. C., & Gafoor, A. K. I. (2014). Does the Use of Metacognitive Strategies Influence Students ’ Problem Solving Skills in Physics ? Journal Of Humanities And Social Science, 19(11), 48–51.

Siegel, M. A. (2012). Filling in the Distance Between Us: Group Metacognition During Problem Solving in a Secondary Education Course. Journal of Science Education and Technology, 21(3), 325–341.

Taasoobshirazi, G., Bailey, M., & Farley, J. (2015). Physics Metacognition Inventory Part II : Confirmatory factor analysis and Rasch analysis Physics Metacognition Inventory Part II : Con fi rmatory factor analysis and Rasch analysis. International Journal of Science Education.

Taasoobshirazi, G., & Farley, J. (2013). Construct Validation of the Physics Metacognition Inventory. International Journal of Science Education, 35(3), 447–459.

Wall, K., & Hall, E. (2016). Teachers as metacognitive role models. European Journal of Teacher Education ISSN: Retrieved from

Zohar, A., & Barzilai, S. (2013). Studies in Science Education A review of research on metacognition in science education : current and future directions. Studies in Science EducationStudies in Science Education, 49(2), 121–169.