Revealing students' thinking schemes in solving direct current electrical circuit problems
DOI:
https://doi.org/10.21067/mpej.v9i2.11354Keywords:
Thiking Scheme, Concept Map, Computational ThinkingAbstract
Students’ thinking schemes must be revealed to discover the students’ fundamental problems in solving direct current (DC) electrical circuit problems. Concept maps and problem-solving can be used to reveal students’ thinking schemes. The method used in this study is descriptive qualitative. The research was conducted on second-semester students who took the Fundamental Physics II course at a private university in Madiun in 2023/2024, totaling 9 students. Data was collected using the documentation method in the form of assignments to make concept maps, tests, and interviews. The results of this study reveal students’ thinking schemes, which can be categorized into computational thinking (CT), non-CT, and combined thinking (CT and non-CT). Non-CT students’ thinking schemes use trial and error methods to solve problems and intuition to conclude.
Downloads
References
Akpinar, Ş., & Korkusuz, M. E. (2019). Influence of active learning on undergraduate students’ achievements in and attitudes towards simple electric circuits in physics. Journal of Educational Technology and Online Learning, 2(1), 16–33. https://doi.org/10.31681/jetol.518281
Aligo, B. L., Branzuela, R. L., Faraon, C. A. G., Gardon, J. D., & Orleans, A. V. (2021). Teaching and learning electricity—A study on students’ and science teachers’ common misconceptions. Manila Journal of Science, 14, 22–34. https://www.dlsu.edu.ph/wp-content/uploads/pdf/research/journals/mjs/MJS14-2021/issue-1/MJS14-3-2021-gardon-et-al.pdf
Baptista, M., & Martins, I. (2023). Effect of a STEM approach on students’ cognitive structures about electrical circuits. International Journal of STEM Education, 10(1), Article 3. https://doi.org/10.1186/s40594-022-00393-5
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905
Dwyer, H. A., Boe, B., Hill, C., Franklin, D., & Harlow, D. (2014). Computational thinking for physics: Programming models of physics phenomenon in elementary school. In Proceedings of the Physics Education Research Conference 2013 (pp. 133–136). https://doi.org/10.1119/perc.2013.pr.021
Eachempati, P., Ramnarayan, K., KS, K. K., & Mayya, A. (2020). Concept maps for teaching, training, testing and thinking. MedEdPublish, 9(1), 171. https://doi.org/10.15694/mep.2020.000171.1
Faizah, S., Nusantara, T., Sudirman, & Rahardi, R. (2022). Constructing students’ thinking process through assimilation and accommodation framework. Mathematics Teaching-Research Journal, 14(1), 253–269.
Franchin, M. N. (2006). Using simulation programs to enhance learning in electrical circuits classes. In Anais do XXXIV Congresso Brasileiro de Ensino de Engenharia (pp. 851–863).
Gottschlich, B., Burde, J. P., Wilhelm, T., Dopatka, L., Spatz, V., Schubatzky, T., ... & Hopf, M. (2024). A context-based teaching concept on electric circuits Development and first results. Journal of Physics: Conference Series, 2750(1). https://doi.org/10.1088/1742-6596/2750/1/012010
Gustavsson, I. (2003). A remote access laboratory for electrical circuit experiments. International Journal of Engineering Education, 19(3), 409–419.
Handayani, R. D., Lesmono, A. D., Prastowo, S. H. B., Supriadi, B., & Mutia Dewi, N. (2023). Students’ computational thinking skills in physics learning: A case study of kinematic concepts. Indonesian Review of Physics, 6(1), 1–9. https://doi.org/10.12928/irip.v6i1.6464
Herawati, N. I., Kuswanto, H., Wahyuni, M., & Aristaria, A. (2024). Scratch-assisted computational thinking in physics: A literature review. JIPF (Jurnal Ilmu Pendidikan Fisika), 9(1), 105. https://doi.org/10.26737/jipf.v9i1.4696
Hernández-Suárez, C. A., Prada-Nunez, R., & Gamboa-Suárez, A. A. (2020). Using concept maps to understand mechanical physics concepts in high school students. Journal of Physics: Conference Series, 1672(1), 012019. https://doi.org/10.1088/1742-6596/1672/1/012019
Impey, C., Buxner, S., & Antonellis, J. (2012). Non-scientific beliefs among undergraduate students. Astronomy Education Review, 11(1). https://doi.org/10.3847/aer2012016
Ivanjek, L., Morris, L., Schubatzky, T., Hopf, M., Burde, J. P., Haagen-Schützenhöfer, C., ... & Wilhelm, T. (2021). Development of a two-tier instrument on simple electric circuits. Physical Review Physics Education Research, 17(2), 020123. https://doi.org/10.1103/PhysRevPhysEducRes.17.020123
Joseph, C., Conradsson, D., Nilsson Wikmar, L., & Rowe, M. (2017). Structured feedback on students’ concept maps: The proverbial path to learning? BMC Medical Education, 17(1), 90. https://doi.org/10.1186/s12909-017-0930-3
Kapartzianis, A., & Kriek, J. (2014). Conceptual change activities alleviating misconceptions about electric circuits. Journal of Baltic Science Education, 13(3), 298–315. https://doi.org/10.33225/jbse/14.13.298
Kollöffel, B., & de Jong, T. A. J. M. (2013). Conceptual understanding of electrical circuits in secondary vocational engineering education: Combining traditional instruction with inquiry learning in a virtual lab. Journal of Engineering Education, 102(3), 375–393. https://doi.org/10.1002/jee.20022
Küçüközer, H., & Demirci, N. (2008). Pre-service and in-service physics teachers’ ideas about simple electric circuits. Eurasia Journal of Mathematics, Science and Technology Education, 4(3), 303–311. https://doi.org/10.12973/ejmste/75354
Küçüközer, H., & Kocakülah, S. (2007). Secondary school students’ misconceptions about simple electric circuits. Journal of Turkish Science Education, 4(1), 101–115.
Küçüközer, H., & Kocakülah, S. (2008). Effect of simple electric circuits teaching on conceptual change in grade 9 physics course. Journal of Turkish Science Education, 5(1), 59–74. http://www.tused.org
Limbong, N., Herlina, K., Maulina, H., & Abdurrahman, A. (2023). Problem-solving and computational thinking practices: Lesson learned from the implementation of ExPRession model. JIPF (Jurnal Ilmu Pendidikan Fisika), 8(1), 1-9. https://doi.org/10.26737/jipf.v8i1.3042
Liu, Z., Pan, S., Zhang, X., & Bao, L. (2022). Assessment of knowledge integration in student learning of simple electric circuits. Physical Review Physics Education Research, 18(2), 020102. https://doi.org/10.1103/PhysRevPhysEducRes.18.020102
Llinás, J. G., Macías, F. S., & Márquez, L. M. T. (2020). The use of concept maps as an assessment tool in physics classes: Can one use concept maps for quantitative evaluations? Research in Science Education, 50(5), 1789–1804. https://doi.org/10.1007/s11165-018-9753-4
Mistades, V. M. (2009). Concept mapping in introductory physics. Journal of Education and Human Development, 3(1), 177–186.
McGlacken-Byrne, D., Larkan, F., Mannan, H., Vallières, F., & Kodate, N. (2022). An introduction to systems thinking. In Systems Thinking for Global Health: How Can Systems-Thinking Contribute to Solving Key Challenges in Global Health? (pp. 1–17). Oxford University Press. https://doi.org/10.1093/oso/9780198799498.003.0001
Nuriyah, S., Winarno, N., Kaniawati, I., Fadly, W., & Sujito, S. (2024). Analyzing students’ conceptions in simple electric circuits topic using four-tier diagnostic test. Journal of Research in Instructional, 4(1), 295–313. https://doi.org/10.30862/jri.v4i1.339
Pabón-Galán, C. A., Hernández-Suarez, C. A., & Paz-Montes, L. S. (2021). Physics learning based on the use of concept maps. Journal of Physics: Conference Series, 2102(1), 012006. https://doi.org/10.1088/1742-6596/2102/1/012006
Papadimitriou, A. (2012). A scenario-based learning of electrical circuits. Journal of Education and Practice, 3(7), 27–40.
Pérez Martínez, M., Ramos Guardarrama, J., Santos Baranda, J., & Silvério Freire, R. C. (2022). Utilización del software Scilab como herramienta didáctica en las prácticas de laboratorio de circuitos eléctricos. Ingenería Energética, 43(3). 1-10.
Ramnarain, U., & Moosa, S. (2017). The use of simulations in correcting electricity misconceptions of grade 10 South African physical sciences learners. International Journal of Innovation in Science and Mathematics Education, 25(5), 1–20.
Regita, R., & Yusup, M. (2024). Perceptions of high school physics teachers regarding the use of concept maps in physics learning. AIP Conference Proceedings, 3052(1), 204095. https://doi.org/10.1063/5.0204095
Setyani, N., Suparmi, S., Sarwanto, S., & Jeffry, H. (2017). Students’ conception and perception of simple electrical circuit. Journal of Physics: Conference Series, 909(1), 012051.
Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43(6), 535–555. https://doi.org/10.1002/tea.20136
Suryadi, A., Kusairi, S., & Husna, D. A. (2020). Comparative study of secondary school students’ and pre-service teachers’ misconception about simple electric circuit. Jurnal Pendidikan Fisika Indonesia, 16(2), 111–121. https://doi.org/10.15294/jpfi.v16i2.21909
Syamsuri. (2016). Skema berpikir mahasiswa dalam mengkonstruksi bukti formal matematis menggunakan cognitive mapping. Jurnal Penelitian dan Pembelajaran Matematika, 9(1), 73–82.
Utami, P. L., Suprapto, N., & Hidaayatullaah, H. N. (2022). Exploring research trends of physics concept mapping in physics learning: Bibliometric analysis. Studies in Philosophy of Science and Education, 3(2), 58–69. https://doi.org/10.46627/sipose.v3i2.308
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Yadiannur, M. (2017). Mobile learning based worked example in electric circuit (WEIEC) application to improve the high school students’ electric circuits interpretation ability. International Journal of Environmental and Science Education, 12(3), 539–558. https://doi.org/10.12973/ijese.2017.1246p
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Momentum: Physics Education Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Momentum: Physisc Education Journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles and allow readers to use them for any other lawful purpose. 
This work is licensed under a Creative Commons Attribution 4.0 International License. The Authors submitting a manuscript do so with the understanding that if accepted for publication, copyright of the article shall be assigned to Momentum: Physics Education Journal
.png)
.png)
.png)
.png)




