Students’ acceptance of mobile-based assessment

Authors

  • Nur Adillawati Kosim Saputri Universitas Pendidikan Indonesia, Indonesia
  • Ade Gafar Abdullah Universitas Pendidikan Indonesia, Indonesia
  • Dadang Lukman Hakim Universitas Pendidikan Indonesia, Indonesia

DOI:

https://doi.org/10.21067/mpej.v5i1.4575

Keywords:

mobile-based assessment, mobile-based assessment acceptance model, mobile learning, technology acceptance model

Abstract

The effective development of a Mobile-Based Assessment (MBA) depends on students’ acceptance. The aim of this paper was to examine the determinant factor of students’ behavioral intention to use mobile-based assessment. Data were collected from 105 second grade students of a vocational high school through an online survey questionnaire. Partial Least Squares (PLS) was used to test the measurement and the structural model. Results showed Perceived Ease of Use as the strongest direct predictor of Behavioral Intention to Use, followed by Perceived Usefulness. Content and Mobile Self-Efficacy only has an indirect effect. These four variables explain 51.3 percent of the variance of Behavioral Intention to Use.

Downloads

Download data is not yet available.

References

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50, 179–211.

Ajzen, I., & Madden, T. J. (1986). Prediction of Goal-Directed Behavior : Attitudes , Intentions , and Perceived Behavioral Control. Journal of Experimental Social Psychology, 474, 453–474.

Alioon, Y., & Delialio glu, €Omer. (2017). The effect of authentic m-learning activities on student engagement and motivation. British Journal of Educational Technology, 00(00). https://doi.org/10.1111/bjet.12559

Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares approach to causal modelling: personal computer adoption and use as an illustration. Technology Studies, 2, 285–309.

Bogdanović, Z., Barać, D., Jovanić, B., Popović, S., & Radenković, B. (2014). Evaluation of mobile assessment in a learning management system. British Journal of Educational Technology, 45(2), 231–244. https://doi.org/10.1111/bjet.12015

Brinke, D. J., van Bruggen, J., Hermans, H., Burgers, J., Giesbers, B., Koper, R., & Latour, I. (2007). Modeling assessment for re-use of traditional and new types of assessment. Computers in Human Behavior, 23, 2721–2741.

Chen, C.-M., & Chen, M.-C. (2009). Mobile formative assessment tool based on data mining techniques for supporting web-based learning. Computers & Education, 52(1), 256–273. Retrieved from https://www.learntechlib.org/p/67119

Chen, K., Chen, J. V, & Yen, D. C. (2011). Dimensions of self-efficacy in the study of smartphone acceptance. Computer Standards & Interfaces, 33(4), 422–431. https://doi.org/10.1016/j.csi.2011.01.003

Chin, W. W. (2014). The Partial Least Squares Approach to Structural Equation Modeling, (April).

Chin, W. W., & Todd, P. A. (1995). On the Use, Usefulness, and Ease of Use of Structural Equation Modeling in MIS Research: A Note of Caution. MIS Quarterly, 19(2), 237–246. https://doi.org/10.2307/249690

Chou, P., Chang, C., & Lin, C. (2017). BYOD or not : A comparison of two assessment strategies for student learning. Computers in Human Behavior, 74, 63–71. https://doi.org/10.1016/j.chb.2017.04.024

Chu, H., Hwang, G., Tsai, C., & Tseng, J. C. R. (2010). A two-tier test approach to developing location-aware mobile learning systems for natural science courses. Computers & Education, 55(4), 1618–1627. https://doi.org/10.1016/j.compedu.2010.07.004

Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189–211. https://doi.org/10.2307/249688

Dalby, D., & Swan, M. (2018). Using digital technology to enhance formative assessment in mathematics classrooms. British Journal of Educational Technology, 00(00). https://doi.org/10.1111/bjet.12606

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.

Davis, F. D. (1989a). Perceived Usefulness , Perceived Ease of Use , and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Davis, F. D. (1989b). User Acceptance of Computer Technology : A Comparison of Two Theoretical Models. Management Science, 35, 982–1003. https://doi.org/10.1287/mnsc.35.8.982

Diseko, R., & Modiba, W. (2016). Learners’ Experiences of an Authentic Online Assessment Test in Understanding of Basic Accounting Content Knowledge : A Case Study. Proceedings of ADVED 2016 2nd International Conference on Advances in Education and Social Sciences, (October), 339–350.

Fidenia s.r.l. (2020). Quizzez and Surveys for Everyone. Retrieved from https://www.questbase.com/product/

Fishbein, M. (1979). A theory of reasoned action: Some applications and implications. Nebraska Symposium on Motivation, 27, 65–116.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equations models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

Fuad, M., Deb, D., Etim, J., & Gloster, C. (2018). Mobile response system: A novel approach to interactive and hands-on activity in the classroom. Educational Technology Research and Development, 66, 493–514. https://doi.org/10.1007/s11423-018-9570-5

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.

Kuo-hung, C., Kuo-en, C., Chung-hsien, L., & Yao-ting, S. (2016). Integration of Mobile AR Technology in Performance Assessment. Educational Technology & Society, 19(4), 239–251.

Landry, B. J. L., Griffeth, R., & Hartman, S. (2006). Measuring Student Perceptions of Blackboard Using the Technology Acceptance Model. Decision Sciences Journal of Innovative Education, 4(1), 87–99. https://doi.org/10.1111/j.1540-4609.2006.00103.x

Nikou, S. A., & Economides, A. A. (2015). The impact of paper-based , computer-based and mobile-based self- assessment on students ’ science motivation and achievement. Computers in Human Behavior, 1–8. https://doi.org/10.1016/j.chb.2015.09.025

Nikou, S. A., & Economides, A. A. (2017a). Mobile-Based Assessment : Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior, 68, 83–95. https://doi.org/10.1016/j.chb.2016.11.020

Nikou, S. A., & Economides, A. A. (2017b). Mobile-based assessment : Investigating the factors that in fl uence behavioral intention to use. Computers & Education, 109, 56–73. https://doi.org/10.1016/j.compedu.2017.02.005

Ong, C., Lai, J., & Wang, Y. (2004). Factors affecting engineers ’ acceptance of asynchronous e-learning systems in high-tech companies, 41, 795–804. https://doi.org/10.1016/j.im.2003.08.012

Padilla-Meléndez, A., Garrido-Moreno, A., & Del Aguila-Obra, A. R. (2008). Factors affecting e-collaboration technology use among management students. Computers & Education, 51, 609–623. https://doi.org/10.1016/j.compedu.2007.06.013

Pušnik, M., Šumak, B., & Heric, M. (2011). A meta-analysis of e-learning technology acceptance : The role of user types and e-learning technology types. Computers in Human Behavior, 27, 2067–2077. https://doi.org/10.1016/j.chb.2011.08.005

Ringle, C. M., Wende, Sven, & Becker, J.-M. (2015). SmartPLS 3. Bönningstedt: SmartPLS. Retrieved from http://www.smartpls.com

Roschelle, J., Rafanan, K., Bhanot, R., & Claro, S. (2010). Scaffolding group explanation and feedback with handheld technology : Impact on students’ mathematics learning. Educational Technology Research & Development, 58, 399–419. https://doi.org/10.1007/s11423-009-9142-9

Rosenberg, J. M., & Koehler, M. J. (2015). Context and Technological Pedagogical Content Knowledge (TPACK): A Systematic Review. Journal of Research on Technology in Education, 47(3), 186–210. https://doi.org/10.1080/15391523.2015.1052663

Salisbury, W. D., Chin, W. W., Gopal, A., & Newsted, P. R. (2002). Research Report: Better Theory Through Measurementâ€â€Developing a Scale to Capture Consensus on Appropriation. Information Systems Research, 13(1), 91–103. Retrieved from http://www.jstor.org/stable/23015825

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers ’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009

Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education, 52(2), 302–312. https://doi.org/https://doi.org/10.1016/j.compedu.2008.08.006

Terzis, V., & Economides, A. A. (2011). The acceptance and use of computer based assessment. Computers & Education, 56(4), 1032–1044. https://doi.org/10.1016/j.compedu.2010.11.017

Terzis, V., Moridis, C. N., & Economides, A. A. (2013). Continuance acceptance of computer based assessment through the integration of user ’ s expectations and perceptions. Computers & Education Journal, 62, 50–61. https://doi.org/10.1016/j.compedu.2012.10.018

Van Raaij, E., & Schepers, J. (2008). The acceptance and use of virtual learning environment in China. Computers & Education, 50, 838–852. https://doi.org/10.1016/j.compedu.2006.09.001

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478.

Wang, A. I. (2015). The wear out effect of a game-based student response system *. Computers & Education, 82, 217–227. https://doi.org/10.1016/j.compedu.2014.11.004

Downloads

Published

2021-01-31

How to Cite

Saputri, N. A. K., Abdullah, A. G. ., & Hakim , D. L. . (2021). Students’ acceptance of mobile-based assessment. Momentum: Physics Education Journal, 5(1), 43–52. https://doi.org/10.21067/mpej.v5i1.4575

Issue

Section

Articles