Teaching first order phase transition using a zipper model

Authors

  • Reshma Perayil Swami Nithyandha Polytechnic College, India
  • Udayanandan Kandoth Murkoth Sree Narayana College, India
  • Prasanth Pulinchery Government Engineering College Thrissur, India

DOI:

https://doi.org/10.21067/mpej.v6i1.5850

Keywords:

zipper model, statistical mechanics, first order phase transition

Abstract

In 1968, Kittel published the zipper model for demonstrating the first order phase transition which is applicable to DNA like structures. This paper utilize this model to explain the behavior of many thermodynamic properties before, at and after phase transition to get a clear picture about what the changes are happening to the system during phase transition. Many textbooks say that entropy and volume show discontinuity at phase transition whereas Gibbs free energy is continuous. The zipper model shows that energy is also discontinuous as shown in the paper. Understanding the phase transition is still a difficult topic for the undergraduate students and hopefully this paper can help them to overcome this difficulty.

Downloads

Download data is not yet available.

References

Ali, M. (2021). Transition energy, orientation force and work done in transitional behavior atoms: formulating new principles in thermodynamics. ChemRxiv, 3. https://doi.org/10.26434/chemrxiv.11553057.v3

Badasyan, A. (2021). System size dependence in the Zimm–Bragg model: partition function limits, transition temperature and interval. Polymers, 13(12), 1985. https://doi.org/10.3390/polym13121985

Bagchi, B. (2018). Statistical mechanics for chemistry and materials science. CRC Press. https://doi.org/10.1201/9781315113951

Banuti, D., Raju, M., Ma, P. C., Ihme, M., & Hickey, J.-P. (2017). Seven questions about supercritical fluids - towards a new fluid state diagram. 55th AIAA Aerospace Sciences Meeting, 1106. https://doi.org/10.2514/6.2017-1106

Bellantuono, L., Janik, R. A., Jankowski, J., & Soltanpanahi, H. (2019). Dynamics near a first order phase transition. Journal of High Energy Physics, 2019(10), 146. https://doi.org/10.1007/JHEP10(2019)146

Brahmachari, S., & Marko, J. F. (2018). DNA mechanics and topology. In Biomechanics in Oncology (pp. 11–39). Springer. https://doi.org/10.1007/978-3-319-95294-9_2

Carvalho-Silva, V. H., Coutinho, N. D., & Aquilanti, V. (2020). From the kinetic theory of gases to the kinetics of rate processes: On the verge of the thermodynamic and kinetic limits. Molecules, 25(9), 2098. https://doi.org/10.3390/molecules25092098

Deger, A., Brandner, K., & Flindt, C. (2018). Lee-Yang zeros and large-deviation statistics of a molecular zipper. Physical Review E, 97(1), 012115. https://doi.org/10.1103/PhysRevE.97.012115

Deger, A., & Flindt, C. (2019). Determination of universal critical exponents using Lee-Yang theory. Physical Review Research, 1(2), 023004. https://doi.org/10.1103/PhysRevResearch.1.023004

Dos Anjos, P. H. R. (2019). Phase transitions and zeros of the partition function: An introduction. Orbital: The Electronic Journal of Chemistry, 11(2). https://doi.org/10.17807/orbital.v11i2.1362

Finkelstein, A. V, & Ptitsyn, O. (2016). Protein physics: A course of lectures. Elsevier.

Fultz, B. (2020). Phase transitions in materials. Cambridge University Press.

Gridnev, S. A., & Popov, I. I. (2020). Kinetics of phase transformation at the Curie point of ferroelectric ceramic Ba 0.8 Sr 0.2 TiO 3. Ferroelectrics, 561(1), 127–134. https://doi.org/10.1080/00150193.2020.1736925

Inaba, H. (2015). The development of ensemble theory. The European Physical Journal H, 40(4–5), 489–526. https://doi.org/10.1140/epjh/e2015-60034-2

Janke, W., Schierz, P., & Zierenberg, J. (2017). Transition barrier at a first-order phase transition in the canonical and microcanonical ensemble. Journal of Physics: Conference Series, 921(1), 012018. https://doi.org/10.1088/1742-6596/921/1/012018

Kojima, C., Sk, U. H., Fukushima, D., Irie, K., Akazawa, N., Umeda, M., & Niidome, T. (2015). Effect of main chain conformation on thermosensitivity in elastin-like peptide-grafted polylysine. RSC Advances, 5(127), 104900–104906. https://doi.org/10.1039/C5RA23865J

Koksharov, Y. A. (2020). Analytic solutions of the Weiss mean field equation. Journal of Magnetism and Magnetic Materials, 516, 167179. https://doi.org/10.1016/j.jmmm.2020.167179

Mogliacci, S., Kolbé, I., & Horowitz, W. A. (2019). Phase transitions in finite size systems. Journal of Physics: Conference Series, 1271(1), 012022. https://doi.org/10.1088/1742-6596/1271/1/012022

Naiser, T., Kayser, J., Mai, T., Michel, W., & Ott, A. (2008). Position dependent mismatch discrimination on DNA microarrays – experiments and model. BMC Bioinformatics, 9(1), 509. https://doi.org/10.1186/1471-2105-9-509

Oono, Y. (2017). Perspectives on statistical thermodynamics. Cambridge University Press.

Park, W. M. (2020). Coiled-coils: The molecular zippers that self-assemble protein nanostructures. International Journal of Molecular Sciences, 21(10), 3584. https://doi.org/10.3390/ijms21103584

Sauer, T. (2017). A look back at the Ehrenfest classification. The European Physical Journal Special Topics, 226(4), 539–549. https://doi.org/10.1140/epjst/e2016-60344-y

Shamis, M., & Zeitouni, O. (2018). The Curie–Weiss model with complex temperature: Phase transitions. Journal of Statistical Physics, 172(2), 569–591. https://doi.org/10.1007/s10955-017-1812-0

Thiele, U., Frohoff-Hülsmann, T., Engelnkemper, S., Knobloch, E., & Archer, A. J. (2019). First order phase transitions and the thermodynamic limit. New Journal of Physics, 21(12), 123021. https://doi.org/10.1088/1367-2630/ab5caf

Xiong, S., Qi, W., Huang, B., Wang, M., & Wei, L. (2011). Gibbs free energy and size–temperature phase diagram of hafnium nanoparticles. The Journal of Physical Chemistry C, 115(21), 10365–10369. https://doi.org/10.1021/jp200093a

Zeng, F.-L., Zhou, X.-Y., Li, N., Wang, A.-B., Wang, W.-K., Jin, Z.-Q., Ren, Y.-R., Fang, B.-J., Yuan, N.-Y., & Ding, J.-N. (2021). A multifunctional zipper-like sulfur electrode enables the stable operation of lithium-sulfur battery through self-healing chemistry. Energy Storage Materials, 34, 755–767. https://doi.org/10.1016/j.ensm.2020.10.025

Zhu, M., Ren, K., Liu, L., Lv, S., Miao, X., Xu, M., & Song, Z. (2019). Direct observation of partial disorder and zipperlike transition in crystalline phase change materials. Physical Review Materials, 3(3), 033603. https://doi.org/10.1103/PhysRevMaterials.3.033603

Downloads

Published

2022-01-31

How to Cite

Perayil, R., Murkoth, U. K., & Pulinchery, P. (2022). Teaching first order phase transition using a zipper model. Momentum: Physics Education Journal, 6(1), 1–9. https://doi.org/10.21067/mpej.v6i1.5850

Issue

Section

Articles