Introducing "Physics of music" to students using free software

Authors

  • Nishanth Pothiyodath Kannur University, India
  • Udayanandan Kandoth Murkoth Sree Narayana College, India

DOI:

https://doi.org/10.21067/mpej.v6i1.6020

Keywords:

physics of music, sound, pitch, rhythm

Abstract

Many  consider physics to be a highly mathematical oriented  subject to study. To break this opinion and also to generate a deep interest in  physics, a course on ‘Physics of Music’ can  be introduced at any level of a curriculum. We present a simple and practical way of introducing this topic even for school level students. Teachers, along with students, can visualise and feel physics all time throughout the course.

Downloads

Download data is not yet available.

References

Alho, K., Grimm, S., Mateo-León, S., Costa-Faidella, J., & Escera, C. (2012). Early processing of pitch in the human auditory system. European Journal of Neuroscience, 36(7), 2972–2978. https://doi.org/10.1111/j.1460-9568.2012.08219.x

Beament, J. (2003). How we hear music – The relationship between music and the hearing mechanism. Boydell Press.

Berg, R. E., & Stork, G. D. (2005). The physics of sound (3rd ed.). Pearson Prentice-Hall.

Black, A. N., & Magruder, R. H. (2017). An experimental introduction to acoustics. The Physics Teacher, 55(8), 482–484. https://doi.org/10.1119/1.5008344

Boedts, M. J. O. (2020). Tympanic resonance hypothesis. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.00014

Bucur, V. (2017). Wood species for musical instruments. In The Acoustics of Wood. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1201/9780203710128

Chern, A., Tillmann, B., Vaughan, C., & Gordon, R. L. (2018). New evidence of a rhythmic priming effect that enhances grammaticality judgments in children. Journal of Experimental Child Psychology, 173, 371–379. https://doi.org/10.1016/j.jecp.2018.04.007

Datta, A. K., Sengupta, R., Banerjee, K., & Ghosh, D. (2019). Perception of virtual notes while tanpura playing. In Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2610-3_7

de Winter, J. (2019). Physics and Birdsong: “Listening†with Graphs. The Physics Teacher, 57(6), 364–367. https://doi.org/10.1119/1.5124271

Deva, B. C. (1967). Perception of rhythm. Journal of Music Academy, Madras, 38, 132–135.

Dostal, J. (2017). Incorporating local experts into a Physics of Music class. The Journal of the Acoustical Society of America, 141(5), 4020–4020. https://doi.org/10.1121/1.4989250

Dostal, J. A. (2020). Solving real-world problems in a physics of music class. The Journal of the Acoustical Society of America, 148(4), 2564–2564. https://doi.org/10.1121/1.5147117

Dubey, V., & Krishna, I. R. P. (2021). Theoretical and experimental studies on the vibration of membranes of Mridangam. Applied Acoustics, 181. https://doi.org/10.1016/j.apacoust.2021.108121

Fabiani, M., & Friberg, A. (2011). Influence of pitch, loudness, and timbre on the perception of instrument dynamics. The Journal of the Acoustical Society of America, 130(4), EL193–EL199. https://doi.org/10.1121/1.3633687

Florentine, M., Popper, A. N., & Fay, R. R. (Eds). (2011). Loudness. In Springer Handbook of Auditory Research. Springer-Verlag New York.

Frank Fahy, D. T. (2015). Fundamentals of Sound and Vibration. CRC Press. https://doi.org/10.1201/b18348

Gilbert, P. U. P. A., & Willy, H. (2008). Physics in the Arts. Elsevier Academic Press.

Gunther, L. (2012). The physics of music and color. Springer-Verlag New York. https://doi.org/10.1007/978-1-4614-0557-3

Harder-Viddal, C. (2019). Another Look at Combination Tones. The Physics Teacher, 57(5), 315–319. https://doi.org/10.1119/1.5098921

Hechter, R. P., & Bergman, D. (2016). In harmony: Inquiry based learning in a blended physics and music class. Physics Education, 51(6). https://doi.org/10.1088/0031-9120/51/6/065015

Howard, D. M., & Angus, J. A. S. (2017). Acoustics and Psychoacoustics (5th ed.). Routledge.

Jaeger, H. (2017). Audacity for teaching the Physics of Music. Bulletin of the American Physical Society, 62(18).

Jaeger, H. (2020). An acoustic impedance probe for the teaching of musical acoustics to non-majors. The Journal of the Acoustical Society of America, 148(4), 2563–2563. https://doi.org/10.1121/1.5147114

Jannereth, E., & Esch, L. (2021). Analyzing Timbres of Various Musical Instruments Using FFT and Spectral Analysis. Journal of Student Research, 10(1). https://doi.org/10.47611/jsrhs.v10i1.1292

Jones, M. R. (1993). Dynamics of musical patterns: How do melody and rhythm fit together? In Psychology and Music: The Understanding of Melody and Rhythm. Psychology Press.

Kim, J. H., Reifgerst, A., & Rizzonelli, M. (2019). Musical Social Entrainment. Music & Science, 2, 1–17. https://doi.org/10.1177/2059204319848991

Konz, N., & Ruiz, M. J. (2018). Amplitude, frequency, and timbre with the French horn. Physics Education, 53(4). https://doi.org/10.1088/1361-6552/aabbc1

Lee, Y. S., Ahn, S., Holt, R. F., & Schellenberg, E. G. (2020). Rhythm and syntax processing in school-age children. Developmental Psychology, 56(9), 1632–1641. https://doi.org/10.1037/dev0000969

Mullen, C., Fracchiolla, C., Prefontaine, B., & Hinko, K. A. (2019). Why it should be ‘and’ not ‘or’: Physics and music. Physics Education Research Conference 2019, 390–395. https://doi.org/10.1119/perc.2019.pr.mullen

Neilsen, T. B., Vongsawad, C. T., & Onwubiko, S. G. (2020). Teaching musical acoustics with simple models and active learning. The Journal of the Acoustical Society of America, 148(4), 2528–2528. https://doi.org/10.1121/1.5147022

Nishanth, P., Prasanth, P., & Udayanandan, K. M. (2019). How Vibrations of a Circular Membrane can be Made Musical? XXXIV Annual IAPT Convention-2019 & National Seminar on Recent Advances & Innovations in Physics Teaching & Research (RAIPTR-2019),October 13-15, 2019, Allahabad, India.

Nishanth, P., & Udayanandan, K. M. (2018). Vibrations of circular membrane some undergraduate excercises. Physics Education (IAPT), 34(4).

Nishanth, P., & Udayanandan, K. M. (2020a). Exploring the Reasons behind the Circular Shape of Drums. Revista Cubana de Física, 37(1), 55–57.

Nishanth, P., & Udayanandan, K. M. (2020b). An investigation of the harmonic nature of Edakka. 32-Th Kerala Science Congress, 25-27, January, 2020, Palakkad, India., 185.

Piacsek, A. A. (2012). An integrated lecture-laboratory approach to teaching musical acoustics. The Journal of the Acoustical Society of America, 132(3), 1958–1958. https://doi.org/10.1121/1.4755212

Ramsey, G. (2012). The Physics of Music course as an introduction to science. The Journal of the Acoustical Society of America, 132(3), 1957–1957. https://doi.org/10.1121/1.4755205

Ramsey, G. (2015). Using sound and music to teach waves. The Journal of the Acoustical Society of America, 138(3), 1771–1771. https://doi.org/10.1121/1.4933602

Ramsey, G. P. (2015). Teaching Physics with Music. The Physics Teacher, 53(7), 415–418. https://doi.org/10.1119/1.4931010

Rossing, T. D. (1977). Acoustics of percussion instrumentsâ€â€Part II. The Physics Teacher, 15(5), 278–288. https://doi.org/10.1119/1.2339633

Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91. https://doi.org/10.1016/j.tics.2014.12.001

Siedenburg, K., Saitis, C., & McAdams, S. (2019). The Present, Past, and Future of Timbre Research. In Timbre: Acoustics, Perception, and Cognition. Springer, Cham. https://doi.org/10.1007/978-3-030-14832-4_1

Spieser, É., & Bailly, C. (2020). Sound propagation using an adjoint-based method. Journal of Fluid Mechanics, 900. https://doi.org/10.1017/jfm.2020.469

Su, Y., & Delgutte, B. (2019). Pitch of harmonic complex tones: Rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits. Journal of Neurophysiology, 122(6), 2468–2485. https://doi.org/10.1152/jn.00512.2019

Suits, B. H. (2019). Frequency and Pitch. The Physics Teacher, 57(9), 630–632. https://doi.org/10.1119/1.5135796

Tallon, B., Roux, P., Matte, G., Guillard, J., & Skipetrov, S. E. (2020). Acoustic density estimation of dense fish shoals. The Journal of the Acoustical Society of America, 148(3), EL234–EL239. https://doi.org/10.1121/10.0001935

Thangprasert, S. S. N. (2015). Missing of fundamental frequency in Kim, a traditional Thai musical instrument. The 41st Congress on Science and Technology of Thailand (STT41), 67–77.

Tiwari, S., & Gupta, A. (2017). Effects of air loading on the acoustics of an Indian musical drum. The Journal of the Acoustical Society of America, 141(4), 2611–2621. https://doi.org/10.1121/1.4979782

Trost, W., Frühholz, S., Schön, D., Labbé, C., Pichon, S., Grandjean, D., & Vuilleumier, P. (2014). Getting the beat: Entrainment of brain activity by musical rhythm and pleasantness. NeuroImage, 103, 55–64. https://doi.org/10.1016/j.neuroimage.2014.09.009

Vurma, A., Raju, M., & Kuuda, A. (2011). Does timbre affect pitch?: Estimations by musicians and non-musicians. Psychology of Music, 39(3), 291–306. https://doi.org/10.1177/0305735610373602

Weiss, H. L., Selvaraj, P., Okita, K., Matsumoto, Y., Voie, A., Hoelscher, T., & Szeri, A. J. (2013). Mechanical clot damage from cavitation during sonothrombolysis. The Journal of the Acoustical Society of America, 133(5), 3159–3175. https://doi.org/10.1121/1.4795774

Worland, R. (2012). Measuring brass instruments: A “Physics of Music†lab exercise. The Journal of the Acoustical Society of America, 132(3), 1958–1958. https://doi.org/10.1121/1.4755210

Worland, R. (2020). Laboratory measurements of conical reed woodwinds in a Physics of Music class. The Journal of the Acoustical Society of America, 148(4), 2564–2564. https://doi.org/10.1121/1.5147115

Downloads

Published

2022-01-31

How to Cite

Pothiyodath, N., & Murkoth, U. K. (2022). Introducing "Physics of music" to students using free software. Momentum: Physics Education Journal, 6(1), 39–50. https://doi.org/10.21067/mpej.v6i1.6020

Issue

Section

Articles