Misconceptions on the understanding of flying objects in fluids
DOI:
https://doi.org/10.21067/mpej.v7i2.6881Keywords:
misconception, flying object, fluid density, object densityAbstract
The concepts of floating, flying, and sinking object have been studied since junior high school. However, we still often find students' misconceptions regarding the concept, especially of flying objects, even at the university level. This work aims to propose a clarification of the concept of a flying object in the fluid to be correctly described the condition for the flying object. We used eggs, water, and salt solutions to demonstrate sinking, rising, and floating objects in the fluids. The results showed that when the density of the object is the same as the density of the fluid, the position of the object is still at the bottom of the fluid since it was not flying in the middle of the depth of the fluid. But the object does not touch the bottom of the container so that the object's height is zero. This is because the object has not had a driving force (Fd = 0) that pushes the object upward towards the surface of the fluid to float. When the density of the fluid slightly exceeds the density of the object, the object immediately moves upward to the fluid surface - floating phenomenon is started. The greater the difference between the density of the fluid and the density of the object, the faster the object moves towards the surface. The object cannot stay at any position between the bottom and the surface of the fluid. A stable position is reached when the object reaches the surface of the fluid to float. This work is expected to increase students' understanding of flying objects in fluids.
Downloads
References
Abdullah, M. (2016). Fisika Dasar 1. Bandung: Institut Teknologi Bandung.
Astuti, L. S. (2017). Penguasaan Konsep IPA Ditinjau dari Konsep Diri dan Minat Belajar Siswa. Formatif: Jurnal Ilmiah Pendidikan MIPA, 7(1), 40–48. doi: 10.30998/formatif.v7i1.1293
Aulia, S., Diana, N., & Yuberti, Y. (2018). Analisis Miskonsepsi Siswa Smp Pada Materi Fisika Analysis of Misconception of Junior High School Students in Physical Materials. Indonesian Journal of Science and Mathematics Education, 01(2), 155–161.
Ceuppens, S., Deprez, J., Dehaene, W., & De Cock, M. (2018). Tackling misconceptions in geometrical optics. Physics Education, 53(4), aac604. doi: 10.1088/1361-6552/aac604
Efwida, S & Sopandi, W. (2016). Peningkatan Penguasaan Konsep Siswa Melalui Pembelajaran Ipa Terpadu Berbasis Masalah Berbantuan Mind Map. EDUSAINS, 8(1), 27–35.
Featonby, D. (2019). Floating eggs?—the answer. Physics Education, 54(4), 047001. doi: 10.1088/1361-6552/aac857
Febrianti, J., Akhsan, H., & Muslim, M. (2019). Analisis Miskonsepsi Suhu Dan Kalor Pada Siswa Sma Negeri 3 Tanjung Raja. Jurnal Inovasi Dan Pembelajaran Fisika, 6(1), 90–102. doi: 10.36706/jipf.v6i1.7819
Fongsamut, K., Tanasittikosol, M., & Phaksunchai, M. (2023). Effectiveness of the simulation-based learning (SBL) assisted with scaffolding approach to address students’ misconceptions about projectile motion. Physics Education, 58(2), 025002. doi: 10.1088/1361-6552/aca57d
González-Espada, W. J., & Jones, B. S. (2020). Betting on Better Buoyancy? Be Careful What You Wish For. The Physics Teacher, 58(6), 413–415. doi: 10.1119/10.0001861
Gumilar, S. (2016). Analisis Miskonsepsi Konsep Gaya Menggunakan Certainty of Respon Index (CRI). Gravity: Jurnal Ilmiah Penelitian Dan Pembelajaran Fisika, 2(1), 59–71.
Halliday, D., Resnick, R., & Walker, J. (2010). Fundamentals of Physics. John Wiley & Sons.
Hewitt, P. (2020). Buoyancies. The Physics Teacher, 58(4), 228–228. doi: 10.1119/1.5145463
Jannah, A. N., Yuliati, L., & Parno. (2016). Melalui Pembelajaran Inquiry Lesson Dengan Strategi Lbq. Jurnal Pendidikan : Teori, Penelitian Dan Pengembangan, 1(2), 409–420.
Kim, S., & Paik, S.-H. (2021). Archimedes’ Balance Approach Applied to Buoyant Force. The Physics Teacher, 59(2), 125–127. doi: 10.1119/10.0003469
Koster, E., & de Regt, H. W. (2020). Science and Values in Undergraduate Education. Science and Education, 29(1), 123–143. doi: 10.1007/s11191-019-00093-7
Krishnan, S., Puthenveettil, B. A., & Hopfinger, E. J. (2020). Hole expansion from a bubble at a liquid surface. Physics of Fluids, 32(3). doi: 10.1063/1.5139569
Lestari, N. A., Hariyono, E., Dwikoranto, D., Prahani, B. K., & Deta, U. A. (2022). Project-based inquiry-science: An innovative learning for thinking, teaching and assessing science-physics. Momentum: Physics Education Journal, 6(1), 86–92. doi: 10.21067/mpej.v6i1.6254
Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2003). Helping students develop an understanding of Archimedes’ principle. Part I: Research on student understanding. Am. J. Phys., 71, 1178.
Marcom, G. S., Villar, R. P., & Kleinke, M. U. (2022). Common errors in mechanical physics among high school graduates in Brazil. Physics Education, 57(1), 015008. doi: 10.1088/1361-6552/ac24e9
McKee, K., & Czarnecki, A. (2019). Acceleration due to buoyancy and mass renormalization. American Journal of Physics, 87(3), 165–170. doi: 10.1119/1.5089205
Neidorf, T., Arora, A., Erberber, E., Tsokodayi, Y., & Mai, T. (2020). Student Misconceptions and Errors in Physics and Mathematics: Exploring Data from TIMSS and TIMSS Advanced.
Nikolić, H. (2022). Submarine paradox softened. American Journal of Physics, 90(11), 841–847. doi: 10.1119/5.0084185
Noxaïc, A. Le, & Fadel, K. (2022). How to Use the Archimedes Paradox for Educational Purposes. The Physics Teacher, 60(2), 137–139. doi: 10.1119/10.0009424
Olascoaga, M. J., Beron-Vera, F. J., Miron, P., Triñanes, J., Putman, N. F., Lumpkin, R., & Goni, G. J. (2020). Observation and quantification of inertial effects on the drift of floating objects at the ocean surface. Physics of Fluids, 32(2), 1–25. doi: 10.1063/1.5139045
Onder-Celikkanli, N., & Tan, M. (2022). Determining Turkish high school students’ misconceptions about electric charge imbalance by using a four-tier misconception test. Physics Education, 57(5). doi: 10.1088/1361-6552/ac68c1
Puspita, W. I., Sutopo, S., & Yuliati, L. (2019). Identifikasi penguasaan konsep fluida statis pada siswa. Momentum: Physics Education Journal, 3(1), 53–57. doi: 10.21067/mpej.v3i1.3346
Susanti, M. M. I. (2021). The Analysis of Mastering of Concepts and Misconceptions in Elementary Teacher Education Students. JPI (Jurnal Pendidikan Indonesia), 10(1), 163. doi: 10.23887/jpi-undiksha.v10i1.26740
Wilson, M. T. (2021). Misconceptions Arising From the Infinite Solenoid Magnetic Field Formula. The Physics Teacher, 59(3), 213–215. doi: 10.1119/10.0003670
Wilujeng, I., & Hidayatullah, Z. (2021). Alternative learning model in physics learning: Effect of the conceptual change model with cognitive conflict on critical thinking skill. Momentum: Physics Education Journal, 5(2), 111–120. doi: 10.21067/mpej.v5i2.5260
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Momentum: Physics Education Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Momentum: Physisc Education Journal allows readers to read, download, copy, distribute, print, search, or link to the full texts of its articles and allow readers to use them for any other lawful purpose.
This work is licensed under a Creative Commons Attribution 4.0 International License. The Authors submitting a manuscript do so with the understanding that if accepted for publication, copyright of the article shall be assigned to Momentum: Physics Education Journal