Misconceptions on the understanding of flying objects in fluids

Authors

  • Edy Wibowo Telkom University, Indonesia
  • Naily Ulya Telkom University, Indonesia
  • Whibatsu Helvantriyudo Telkom University, Indonesia
  • Muhammad Maliki Azyumardi Telkom University, Indonesia
  • Fata Hafiduddin Telkom University, Indonesia
  • Mamat Rokhmat Telkom University, Indonesia
  • Ismudiati Puri Handayani Telkom University, Indonesia
  • Abrar Abrar Telkom University, Indonesia
  • Nurwulan Fitriyanti Telkom University, Indonesia
  • Sutisna Sutisna Universitas Jember, Indonesia
  • Amira Saryati Ameruddin Universiti Tun Hussein Onn, Malaysia

DOI:

https://doi.org/10.21067/mpej.v7i2.6881

Keywords:

misconception, flying object, fluid density, object density

Abstract

The concepts of floating, flying, and sinking object have been studied since junior high school. However, we still often find students' misconceptions regarding the concept, especially of flying objects, even at the university level. This work aims to propose a clarification of the concept of a flying object in the fluid to be correctly described the condition for the flying object. We used eggs, water, and salt solutions to demonstrate sinking, rising, and floating objects in the fluids. The results showed that when the density of the object is the same as the density of the fluid, the position of the object is still at the bottom of the fluid since it was not flying in the middle of the depth of the fluid. But the object does not touch the bottom of the container so that the object's height is zero. This is because the object has not had a driving force (Fd = 0) that pushes the object upward towards the surface of the fluid to float. When the density of the fluid slightly exceeds the density of the object, the object immediately moves upward to the fluid surface - floating phenomenon is started. The greater the difference between the density of the fluid and the density of the object, the faster the object moves towards the surface. The object cannot stay at any position between the bottom and the surface of the fluid. A stable position is reached when the object reaches the surface of the fluid to float. This work is expected to increase students' understanding of flying objects in fluids.

Downloads

Download data is not yet available.

References

Abdullah, M. (2016). Fisika Dasar 1. Bandung: Institut Teknologi Bandung.

Astuti, L. S. (2017). Penguasaan Konsep IPA Ditinjau dari Konsep Diri dan Minat Belajar Siswa. Formatif: Jurnal Ilmiah Pendidikan MIPA, 7(1), 40–48. doi: 10.30998/formatif.v7i1.1293

Aulia, S., Diana, N., & Yuberti, Y. (2018). Analisis Miskonsepsi Siswa Smp Pada Materi Fisika Analysis of Misconception of Junior High School Students in Physical Materials. Indonesian Journal of Science and Mathematics Education, 01(2), 155–161.

Ceuppens, S., Deprez, J., Dehaene, W., & De Cock, M. (2018). Tackling misconceptions in geometrical optics. Physics Education, 53(4), aac604. doi: 10.1088/1361-6552/aac604

Efwida, S & Sopandi, W. (2016). Peningkatan Penguasaan Konsep Siswa Melalui Pembelajaran Ipa Terpadu Berbasis Masalah Berbantuan Mind Map. EDUSAINS, 8(1), 27–35.

Featonby, D. (2019). Floating eggs?—the answer. Physics Education, 54(4), 047001. doi: 10.1088/1361-6552/aac857

Febrianti, J., Akhsan, H., & Muslim, M. (2019). Analisis Miskonsepsi Suhu Dan Kalor Pada Siswa Sma Negeri 3 Tanjung Raja. Jurnal Inovasi Dan Pembelajaran Fisika, 6(1), 90–102. doi: 10.36706/jipf.v6i1.7819

Fongsamut, K., Tanasittikosol, M., & Phaksunchai, M. (2023). Effectiveness of the simulation-based learning (SBL) assisted with scaffolding approach to address students’ misconceptions about projectile motion. Physics Education, 58(2), 025002. doi: 10.1088/1361-6552/aca57d

González-Espada, W. J., & Jones, B. S. (2020). Betting on Better Buoyancy? Be Careful What You Wish For. The Physics Teacher, 58(6), 413–415. doi: 10.1119/10.0001861

Gumilar, S. (2016). Analisis Miskonsepsi Konsep Gaya Menggunakan Certainty of Respon Index (CRI). Gravity: Jurnal Ilmiah Penelitian Dan Pembelajaran Fisika, 2(1), 59–71.

Halliday, D., Resnick, R., & Walker, J. (2010). Fundamentals of Physics. John Wiley & Sons.

Hewitt, P. (2020). Buoyancies. The Physics Teacher, 58(4), 228–228. doi: 10.1119/1.5145463

Jannah, A. N., Yuliati, L., & Parno. (2016). Melalui Pembelajaran Inquiry Lesson Dengan Strategi Lbq. Jurnal Pendidikan : Teori, Penelitian Dan Pengembangan, 1(2), 409–420.

Kim, S., & Paik, S.-H. (2021). Archimedes’ Balance Approach Applied to Buoyant Force. The Physics Teacher, 59(2), 125–127. doi: 10.1119/10.0003469

Koster, E., & de Regt, H. W. (2020). Science and Values in Undergraduate Education. Science and Education, 29(1), 123–143. doi: 10.1007/s11191-019-00093-7

Krishnan, S., Puthenveettil, B. A., & Hopfinger, E. J. (2020). Hole expansion from a bubble at a liquid surface. Physics of Fluids, 32(3). doi: 10.1063/1.5139569

Lestari, N. A., Hariyono, E., Dwikoranto, D., Prahani, B. K., & Deta, U. A. (2022). Project-based inquiry-science: An innovative learning for thinking, teaching and assessing science-physics. Momentum: Physics Education Journal, 6(1), 86–92. doi: 10.21067/mpej.v6i1.6254

Loverude, M. E., Kautz, C. H., & Heron, P. R. L. (2003). Helping students develop an understanding of Archimedes’ principle. Part I: Research on student understanding. Am. J. Phys., 71, 1178.

Marcom, G. S., Villar, R. P., & Kleinke, M. U. (2022). Common errors in mechanical physics among high school graduates in Brazil. Physics Education, 57(1), 015008. doi: 10.1088/1361-6552/ac24e9

McKee, K., & Czarnecki, A. (2019). Acceleration due to buoyancy and mass renormalization. American Journal of Physics, 87(3), 165–170. doi: 10.1119/1.5089205

Neidorf, T., Arora, A., Erberber, E., Tsokodayi, Y., & Mai, T. (2020). Student Misconceptions and Errors in Physics and Mathematics: Exploring Data from TIMSS and TIMSS Advanced.

Nikolić, H. (2022). Submarine paradox softened. American Journal of Physics, 90(11), 841–847. doi: 10.1119/5.0084185

Noxaïc, A. Le, & Fadel, K. (2022). How to Use the Archimedes Paradox for Educational Purposes. The Physics Teacher, 60(2), 137–139. doi: 10.1119/10.0009424

Olascoaga, M. J., Beron-Vera, F. J., Miron, P., Triñanes, J., Putman, N. F., Lumpkin, R., & Goni, G. J. (2020). Observation and quantification of inertial effects on the drift of floating objects at the ocean surface. Physics of Fluids, 32(2), 1–25. doi: 10.1063/1.5139045

Onder-Celikkanli, N., & Tan, M. (2022). Determining Turkish high school students’ misconceptions about electric charge imbalance by using a four-tier misconception test. Physics Education, 57(5). doi: 10.1088/1361-6552/ac68c1

Puspita, W. I., Sutopo, S., & Yuliati, L. (2019). Identifikasi penguasaan konsep fluida statis pada siswa. Momentum: Physics Education Journal, 3(1), 53–57. doi: 10.21067/mpej.v3i1.3346

Susanti, M. M. I. (2021). The Analysis of Mastering of Concepts and Misconceptions in Elementary Teacher Education Students. JPI (Jurnal Pendidikan Indonesia), 10(1), 163. doi: 10.23887/jpi-undiksha.v10i1.26740

Wilson, M. T. (2021). Misconceptions Arising From the Infinite Solenoid Magnetic Field Formula. The Physics Teacher, 59(3), 213–215. doi: 10.1119/10.0003670

Wilujeng, I., & Hidayatullah, Z. (2021). Alternative learning model in physics learning: Effect of the conceptual change model with cognitive conflict on critical thinking skill. Momentum: Physics Education Journal, 5(2), 111–120. doi: 10.21067/mpej.v5i2.5260

Downloads

Published

2023-06-01

How to Cite

Wibowo, E., Ulya, N., Helvantriyudo, W., Azyumardi, M. M., Hafiduddin, F., Rokhmat, M., … Ameruddin, A. S. (2023). Misconceptions on the understanding of flying objects in fluids. Momentum: Physics Education Journal, 7(2), 178–187. https://doi.org/10.21067/mpej.v7i2.6881

Issue

Section

Articles